Centre for Biological Threats and Special Pathogens (Zentrum für Biologische Gefahren und Spezielle Pathogene, ZBS) at the Robert Koch Institute (RKI)

2. Where is it located (include both address and geographical location)?

Nordufer 20, 13353 Berlin, Germany (52°32' N 13°20' E) Seestraße 10, 13353 Berlin, Germany (52°32' N 13°20' E)
3. Floor area of laboratory areas by containment level
BL 4 , 438.00 SqM
BL 3 , 268.00 SqM
BL 2 , 5.821.00 SqM
Total laboratory floor area (SqM)

4. The organizational structure of each facility

(viii) Briefly describe the publication policy of the facility

Scientists are encouraged to publish their results in peer reviewed scientific journals as well as present their work at national and international professional meetings.
The Robert Koch Institute signed the Berlin Declaration on Open Access to Knowledge in the Sciences and Humanities, available at
Under the Dual Use Regulations of the Robert Koch Institute scientists are required to assess the dual use potential of their research before a project is started, during the project period and before results are published.

(ix) Provide a list of publicly-available papers and reports resulting from the work published during the previous 12 months. (To include authors, titles and full references)

1.    Alm E, Broberg EK, Connor T et al.; WHO European Region sequencing laboratories and GISAID EpiCoV group; WHO European Region sequencing laboratories and GISAID EpiCoV group (for RKI Thürmer A, Wedde M, Dürrwald R, Von Kleist M, Drechsel O, Wolff T, Fuchs S, Kmiecinski R, Michel J, Nitsche A) (2020): Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020. Euro Surveill. 25 (32): 2001410. doi: 10.2807/1560-7917.ES.2020.25.32.2001410.  
2.    Altay-Kocak A, Bozdayi G, Michel J, Polat M, Kanik-Yuksek S, Tezer H, Ozkul A, Ahmed K, Nitsche A, Ergünay K (2020): Multi-assay investigation of viral etiology in pediatric central nervous system infections. J. Infect. Dev. Ctries 14 (6): 572–579. Epub Jun 30. doi: 10.3855/jidc.12327.  
3.    Appelt S, Faber M, Köppen K, Jacob D, Grunow R, Heuner K (2020): Francisella tularensis subspecies holarctica and tularemia in Germany. Microorganisms 8 (9): E1448. Epub Sep 22. doi: 10.3390/microorganisms8091448.  
4.    Appelt S, Jacob D, Rohleder AM, Bråve A, Szekely Björndal Å, Di Caro A, Grunow R; Joint Action EMERGE laboratory network (2020): Assessment of biorisk management systems in high containment laboratories, 18 countries in Europe, 2016 and 2017. Euro Surveill. 25 (36): pii=2000089. doi: 10.2807/1560-7917.ES.2020.25.36.2000089.  
5.    Behrensdorf-Nicol HA, Bonifas U, Klimek J, Hanschmann KM, Dorner BG et al. (2020): Transferability study of the BINACLE (binding and cleavage) assay for in vitro determination of botulinum neurotoxin activity. Biologicals 67 (Sept): 81-87. Epub Jul 29. doi: 10.1016/j.biologicals.2020.06.007.  
6.    Böhm H, Cwojdzinski D, Grote U, Heitkötter K, Knauer C, Möller I, Pukropski G, Sasse J et al. (2020): Krisenmanagement – Lehrbuch für den Öffentlichen Gesundheitsdienst Teichert U, Tinnemann P (Hrsg),. Düsseldorf: Akademie für Öffentliches Gesundheitswesen in Düsseldorf.  
7.    Bokelmann M, Edenborough K, Hetzelt N, Kreher P, Lander A, Nitsche A, Vogel U, Feldmann H, Couacy-Hymann E, Kurth A (2020): Utility of primary cells to examine NPC1 receptor expression in Mops condylurus, a potential Ebola virus reservoir. PLoS Negl. Trop. Dis. 14 (1): e0007952. Epub Jan 21. doi: 10.1371/journal.pntd.0007952.  
8.    Böttcher S, Oh DY, Staat D, Stern D, Albrecht S, Willrich N, Zacher B, Mielke M, Rexroth U, Hamouda O, Seifried J (2020): Erfassung der SARS-CoV-2-Testzahlen in Deutschland (Stand 2.12.2020). Epid. Bull. 2020 (49): 14–20. doi: 10.25646/7705.  
9.    Brinkmann A, Kohl C, Radonić A, Dabrowski PW, Mühldorfer K, Nitsche A, Wibbelt G, Kurth A (2020): First detection of bat-borne Issyk-Kul virus in Europe. Sci. Rep. 10 (1): 22384. Epub Dec 24. doi: 10.1038/s41598-020-79468-8.  
10.    Brinkmann A, Souza ARV, Esparza J, Nitsche A, Damaso CR (2020): Re-assembly of nineteenth-century smallpox vaccine genomes reveals the contemporaneous use of horsepox and horsepox-related viruses in the USA. Genome Biol. 21 (1): 286. Epub Dec 4. doi: 10.1186/s13059-020-02202-0.  
11.    Chen F, Köppen K, Rydzewski K, Einenkel R, Morguet C, Vu DT, Eisenreich W, Heuner K (2020): Myo-Inositol as a carbon substrate in Francisella and insights into the metabolism of Francisella sp. strain W12-1067. Int. J. Med. Microbiol. 310 (4): 151426. Epub May 5. doi: 10.1016/j.ijmm.2020.151426.  
12.    Dittmayer C, Meinhardt J, Radbruch H, Radke J, Heppner BI, Heppner FL, Stenzel W, Holland G, Laue M (2020): Why misinterpretation of electron micrographs in SARS-CoV-2-infected tissue goes viral. Lancet 396 (10260): e64-e65. Epub Oct 5. doi: 10.1016/S0140-6736(20)32079-1.  
13.    Doellinger J, Blumenscheit C, Schneider A, Lasch P (2020): Isolation window optimization of data-independent acquisition using predicted libraries for deep and accurate proteome profiling. Anal. Chem. 92 (18): 12185–12192. Epub Aug 25. doi: 10.1021/acs.analchem.0c00994.  
14.    Doellinger J, Schneider A, Hoeller M, Lasch P (2020): Sample Preparation by Easy Extraction and Digestion (SPEED) – a universal, rapid, and detergent-free protocol for proteomics based on acid extraction. Mol. Cell. Proteomics 19 (1): 209–222. Epub 2019 Nov 21. doi: 10.1074/mcp.TIR119.001616.  
15.    Doellinger J, Schneider A, Stark TD, Ehling-Schulz M, Lasch P (2020): Evaluation of MALDI-ToF mass spectrometry for rapid detection of cereulide from Bacillus cereus cultures. Front. Microbiol. 11: 511674. Epub Oct 6. doi: 10.3389/fmicb.2020.511674.  
16.    Domingo C, Bhat N et al. (2020): Stability of yellow fever virus neutralising antibody titres – Authors' reply. Lancet Infect. Dis. 20 (2): 167. Epub Jan 29. doi: 10.1016/S1473-3099(19)30749-2.  
17.    Domingo C, Lamerz J, Cadar D, Stojkovic M, Eisermann P, Merle U, Nitsche A, Schnitzler P (2020): Severe multiorgan failure following yellow fever vaccination. Vaccines (Basel) 8 (2): E249. Epub May 26. doi: 10.3390/vaccines8020249.  
18.    Dupke S, Schubert G, Beudjé F, Barduhn A, Pauly M, Couacy-Hymann E, Grunow R, Akoua-Koffi C, Leendertz FH, Klee SR (2020): Serological evidence for human exposure to Bacillus cereus biovar anthracis in the villages around Taï National Park, Côte d'Ivoire. PLoS Negl. Trop. Dis. 14 (5): e0008292. Epub May 14. doi: 10.1371/journal.pntd.0008292.  
19.    Dürrwald R, Wedde M, Biere B, Oh DY, Heßler-Klee M, Geidel C, Volmer R, Hauri AM, Gerst K, Thürmer A, Appelt S, Reiche J, Duwe S, Buda S, Wolff T, Haas W (2020): Zoonotic infection with swine A/H1avN1 influenza virus in a child, Germany, June 2020. Euro Surveill. 25 (42): 2001638. doi: 10.2807/1560-7917.ES.2020.25.42.2001638.  
20.    Edenborough KM, Mu A, Mühldorfer K, Lechner J, Lander A, Bokelmann M, Couacy-Hymann E, Radonić A, Kurth A (2020): Microbiomes in the insectivorous bat species Mops condylurus rapidly converge in captivity. PLoS One 15 (3): e0223629. Epub Mar 20. doi: 10.1371/journal.pone.0223629.  
21.    Ergünay K, Dinçer E, Kar S, Emanet N, Yalçınkaya D, Dinçer PFP, Brinkmann A, Hacıoğlu S, Nitsche A et al. (2020): Multiple orthonairoviruses including Crimean-Congo hemorrhagic fever virus, Tamdy virus and the novel Meram virus in Anatolia. Ticks Tick Borne Dis. 11 (5): 101448. Epub May 11. doi: 10.1016/j.ttbdis.2020.101448.  
22.    Esparza J, Lederman S, Nitsche A, Damaso CR (2020): Early smallpox vaccine manufacturing in the United States: introduction of the "animal vaccine" in 1870, establishment of "vaccine farms", and the beginnings of the vaccine industry. Vaccine 38 (30): 4773-4779. Epub May 27. doi: 10.1016/j.vaccine.2020.05.037.  
23.    Esparza J, Nitsche A, Damaso CR (2020): Investigations on the historical origin and evolution of the smallpox vaccine. Gac. Méd. Caracas 128 (Supl 1): S88–S97. doi: 10.47307/GMC.2020.128.s1.11.  
24.    Grossegesse M, Hartkopf F, Nitsche A, Doellinger J (2020): Stable isotope-triggered offset fragmentation allows massively multiplexed target profiling on quadrupole-orbitrap mass spectrometers. J. Proteome Res. 19 (7): 2854-2862. Epub May 5. doi: 10.1021/acs.jproteome.0c00065.  
25.    Grossegesse M, Hartkopf F, Nitsche A, Schaade L, Doellinger J, Muth T (2020): Perspective on proteomics for virus detection in clinical samples. J. Proteome Res. 19 (11): 4380-4388. Epub Oct 22. doi: 10.1021/acs.jproteome.0c00674.  
26.    Guito JC, Prescott J et al. (2020): Asymptomatic infection of Marburg virus reservoir bats is explained by a strategy of immunoprotective disease tolerance. Curr. Biol.: Epub Oct 30. doi: 10.1016/j.cub.2020.10.015.  
27.    Hammerl JA, Volkmar S, Jacob D, Klein I et al. (2020): The Burkholderia thailandensis phages ΦE058 and ΦE067 represent distinct prototypes of a new subgroup of temperate Burkholderia myoviruses. Front. Microbiol. 11: 1120. Epub May 27. doi: 10.3389/fmicb.2020.01120.  
28.    Hayward JA, Tachedjian M, Kohl C, Johnson A, Dearnley M, Jesaveluk B, Langer C, Solymosi PD, Hille G, Nitsche A et al. (2020): Infectious KoRV-related retroviruses circulating in Australian bats. Proc. Natl. Acad. Sci. U S A 117 (17): 9529-9536. Epub Apr 13. doi: 10.1073/pnas.1915400117.  
29.    Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A et al. (2020): SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181 (2): 271-280.e8. Epub Mar 4. doi: 10.1016/j.cell.2020.02.052.  
30.    Höper D, Grützke J, Brinkmann A, Mossong J, Matamoros S, Ellis RJ, Deneke C, Tausch SH, Cuesta I, Monzón S, Juliá M, Petersen TN, Hendriksen RS, Pamp SJ, Leijon M, Hakhverdyan M, Walsh AM, Cotter PD, Chandrasekaran L, Tay MYF, Schlundt J, Sala C, De Cesare A, Nitsche A et al. (2020): Proficiency testing of metagenomics-based detection of food-borne pathogens using a complex artificial sequencing dataset. Front. Microbiol. 11: 575377. Epub Nov 4. doi: 10.3389/fmicb.2020.575377.  
31.    Hu B, Siche S, Möller L, Veit M (2020): Amphipathic helices of cellular proteins can replace the helix in M2 of Influenza A virus with only small effects on virus replication. J. Virol. 94 (3): pii: e01605-19. Epub 2019 Nov 6. doi: 10.1128/JVI.01605-19.  
32.    Huber C, Stamm I, Ziebuhr W, Marincola G, Bischoff M, Strommenger B, Jaschkowitz G, Marciniak T, Cuny C, Witte W, Doellinger J, Schaudinn C, Thürmer A, Epping L, Semmler T, Lübke-Becker A, Wieler LH, Walther B (2020): Silence as a way of niche adaptation: mecC-MRSA with variations in the accessory gene regulator (agr) functionality express kaleidoscopic phenotypes. Sci. Rep. 10 (1): 14787. Epub Sep 8. doi: 10.1038/s41598-020-71640-4.
33.    Idoko OT, Domingo C et al. (2020): Serological protection 5–6 years post vaccination against yellow fever in African infants vaccinated in routine programmes. Front. Immunol. 11: 577751. Epub Oct 8. doi: 10.3389/fimmu.2020.577751.  
34.    Ivanusic D, Madela K, Burghard H, Holland G, Laue M, Bannert N (2020): tANCHOR: a novel mammalian cell surface peptide display system. Biotechniques: Epub Dec 14. doi: 10.2144/btn-2020-0073.  
35.    Jacob D, Barduhn A, Tappe D, Rauch J, Heuner K, Hierhammer D, Vom Berge K, Riehm JM, Hanczaruk M, Böhm S, Böhmer MM, Konrad R, Bouschery B, Dauer M, Schichtl E, Hossain H, Grunow R (2020): Outbreak of tularemia in a group of hunters in Germany in 2018 – kinetics of antibody and cytokine responses. Microorganisms 8 (11): E1645. Epub Oct 23. doi: 10.3390/microorganisms8111645.  
36.    Johanns VC, Epping L, Semmler T, Ghazisaeedi F, Lübke-Becker A, Pfeifer Y, Eichhorn I, Merle R, Bethe A, Walther B, Wieler LH (2020): High-zinc supplementation of weaned piglets affects frequencies of virulence and bacteriocin associated genes among intestinal Escherichia coli populations. Front. Vet. Sci. 7: 614513. Epub Dec 16. doi: 10.3389/fvets.2020.614513.  
37.    Karatuna O, Dance DAB, Matuschek E, Åhman J, Turner P, Hopkins J, Amornchai P, Wuthiekanun V, Cusack TP, Baird R, Hennessy J, Norton R, Armstrong M, Zange S, Zoeller L, Wahab T, Jacob D, Grunow R, Kahlmeter G (2020): Burkholderia pseudomallei multi-centre study to establish EUCAST MIC and zone diameter distributions and epidemiological cut-off (ECOFF) values. Clin. Microbiol. Infect.: Epub Jul 9. doi: 10.1016/j.cmi.2020.07.001.  
38.    Klein S, Stern D, Seeber F (2020): Expression of in vivo biotinylated recombinant antigens SAG1 and SAG2A from Toxoplasma gondii for improved seroepidemiological bead-based multiplex assays. BMC Biotechnol. 20 (1): 53. Epub Oct 6. doi: 10.1186/s12896-020-00646-7.  
39.    Klug B, Schnierle B, Trebesch I (2020): Monoklonale Antikörper zur antiinfektiven Therapie. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 63 (11): 1396–1402. Epub Oct 9. doi: 10.1007/s00103-020-03229-1.  
40.    Koban R, Lam T, Schwarz F, Kloke L, Bürge S, Ellerbrok H, Neumann M (2020): Simplified bioprinting-based 3D cell culture infection models for virus detection. Viruses 12 (11): 1298. Epub Nov 12. doi: 10.3390/v12111298.  
41.    Koban R, Neumann M, Nelson PP, Ellerbrok H (2020): Differential efficacy of novel antiviral substances in 3D and monolayer cell culture. Viruses 12 (11): 1294. Epub Nov 12. doi: 10.3390/v12111294.  
42.    Kohl C, Brinkmann A, Radonić A, Dabrowski PW, Nitsche A, Mühldorfer K, Wibbelt G, Kurth A (2020): Zwiesel bat banyangvirus, a potentially zoonotic Huaiyangshan banyangvirus (formerly known as SFTS)-like banyangvirus in Northern bats from Germany. Sci. Rep. 10 (1): 1370. Epub Jan 28. doi: 10.1038/s41598-020-58466-w.  
43.    Krüger L, Kristiansen Y, Reuber E, Möller L, Laue M, Reimer C, Denner J (2020): A comprehensive strategy for screening for xenotransplantation-relevant viruses in a second isolated population of Göttingen minipigs. Viruses 12 (1): 38. Epub 2019 Dec 29. doi: 10.3390/v12010038.  
44.    Kuhring M, Doellinger J, Nitsche A, Muth T, Renard BY (2020): TaxIt: An iterative computational pipeline for untargeted strain-level identification using MS/MS spectra from pathogenic single-organism samples. J. Proteome Res. 19 (6): 2501-2510. Epub May 4. doi: 10.1021/acs.jproteome.9b00714.  
45.    Lasch P, Schneider A, Blumenscheit C, Doellinger J (2020): Identification of microorganisms by liquid chromatography-mass spectrometry (LC-MS1) and in silico peptide mass libraries. Mol. Cell. Proteomics 19 (12): 2125-2139. Epub Sep 30. doi: 10.1074/mcp.TIR120.002061.  
46.    Laue M, Kauter A, Hoffmann T, Michel J, Nitsche A (2020): Morphometry of SARS-CoV and SARS-CoV-2 particles in ultrathin sections of infected Vero cell cultures. bioRxiv: Epub Nov 18. doi: 10.1101/2020.08.20.259531.  
47.    Lecomte E, Laureys G, Verbeke F, Domingo C et al. (2020): A clinician's perspective on yellow fever vaccine-associated neurotropic disease. J. Travel Med. 27 (7): taaa172. Epub Sep 23. doi: 10.1093/jtm/taaa172.  
48.    Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, Laue M, Schneider J, Brünink S, Greuel S, Lehmann M, Hassan O, Aschman T, Schumann E, Chua RL, Conrad C, Eils R, Stenzel W, Windgassen M, Rößler L, Goebel HH, Gelderblom HR, Martin H, Nitsche A et al. (2020): Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci.: Epub Nov 30. doi: 10.1038/s41593-020-00758-5.  
49.    Meinhardt J, Radke J, Dittmayer C, Mothes R, Franz J, Laue M, SchneiderJ, Brünink S, Hassan O, Stenzel W, Windgassen M, Rößler L, Goebel HH, Martin H, Nitsche A et al. (2020): Olfactory transmucosal SARS-CoV-2 invasion as port of Central Nervous System entry in COVID-19 patients. bioRxiv: Epub Jun 4. doi: 10.1101/2020.06.04.135012.  
50.    Mokashi S, Kanaan J, Craft DL, Byrd B, Zenick B, Laue M et al. (2020): Killing of bacterial spores by dodecylamine and its effects on spore inner membrane properties. J. Appl. Microbiol. 129 (6): 1511–1522. Epub Jun 3. doi: 10.1111/jam.14732.  
51.    Möller L, Holland G, Laue M (2020): Diagnostic electron microscopy of viruses with low-voltage electron microscopes. J. Histochem. Cytochem. 68 (6): 389-402. Epub May 21. doi: 10.1369/0022155420929438.  
52.    Mülner P, Schwarz E, Dietel K, Junge H, Herfort S, Weydmann M, Lasch P, Cernava T, Berg G, Vater J (2020): Profiling for bioactive peptides and volatiles of plant growth promoting strains of the Bacillus subtilis complex of industrial relevance. Front. Microbiol. 11: 1432. Epub Jun 30. doi: 10.3389/fmicb.2020.01432.  
53.    Neuhauser H, Thamm R, Buttmann-Schweiger N, Fiebig J, Offergeld R, Poethko-Müller C, Prütz F, Santos-Hövener C, Sarganas Margolis G, Schaffrath Rosario A, Wieler LH, Schaade L (2020): Ergebnisse seroepidemiologischer Studien zu SARS-CoV-2 in Stichproben der Allgemeinbevölkerung und bei Blutspenderinnen und Blutspendern in Deutschland (Stand 3.12.2020). Epid. Bull. 2020 (50): 3–6. doi: 10.25646/7728.  
54.    Nieuwenhuijse DF, Oude Munnink BB, Phan MVT; Global Sewage Surveillance project consortium (for Germany Nitsche A, Brinkmann A) (2020): Setting a baseline for global urban virome surveillance in sewage. Sci. Rep. 10 (1): 13748. Epub Aug 13. doi: 10.1038/s41598-020-69869-0.  
55.    Ortega Pérez P, Wibbelt G, Brinkmann A, Galindo Puentes JA, Tuh FYY, Lakim MB, Nitsche A et al. (2020): Description of Sarcocystis scandentiborneensis sp. nov. from treeshrews (Tupaia minor, T. tana) in northern Borneo with annotations on the utility of COI and 18S rDNA sequences for species delineation. Int. J. Parasitol. Parasites Wildl. 12 (Aug): 220–231. Epub Jul 8. doi: 10.1016/j.ijppaw.2020.07.003.  
56.    Osterman A, Ruf VC, Domingo C, Nitsche A et al. (2020): Travel-associated neurological disease terminated in a postmortem diagnosed atypical HSV-1 encephalitis after high-dose steroid therapy – a case report. BMC Infect. Dis. 20 (1): 150. Epub Feb 18. doi: 10.1186/s12879-020-4859-5.  
57.    Papp S, Kimmerl K, Gatz J, Grunow R, Kaspari O (2020): Untersuchung zur Wirksamkeit von Desinfektionsmitteln für den Einsatz in biologischen Gefahrenlagen. Bonn: Bundesamt für Bevölkerungsschutz und Katastrophenhilfe.  
58.    Papp S, Kimmerl K, Gatz J, Laue M, Grunow R, Kaspari O (2020): Evaluation of sporicidal disinfectants for the disinfection of personal protective equipment during biological hazards. Health Secur. 18 (1): 36–48. Epub Feb 17. doi: 10.1089/hs.2019.0128.  
59.    Patrono LV, Pléh K, Samuni L, Ulrich M, Röthemeier C, Sachse A, Muschter S, Nitsche A, Couacy-Hymann E, Boesch C, Wittig RM, Calvignac-Spencer S, Leendertz FH (2020): Monkeypox virus emergence in wild chimpanzees reveals distinct clinical outcomes and viral diversity. Nat. Microbiol. 5 (7): 955-965. Epub Apr 27. doi: 10.1038/s41564-020-0706-0.  
60.    Peukes J, Xiong X, Erlendsson S, Qu K, Wan W, Calder LJ, Schraidt O, Kummer S et al. (2020): The native structure of the assembled matrix protein 1 of influenza A virus. Nature 587 (7834): 495-498. Epub Sep 9. doi: 10.1038/s41586-020-2696-8.  
61.    Pinder P, Thomzig A, Schulz-Schaeffer WJ, Beekes M (2020): Alpha-synuclein seeds of Parkinson’s disease show high prion-exceeding resistance to steam sterilization. J. Hosp. Infect.: Epub Oct 30. doi: 10.1016/j.jhin.2020.10.018.  
62.    Poethko-Müller C, Prütz F, Buttmann-Schweiger N, Fiebig J, Sarganas Margolis G, Seeling S, Thamm R, Baumann J, Hamouda O, Offergeld R, Schaade L, Lampert T, Neuhauser H (2020): Studien zur Seroprävalenz von SARS-CoV-2 in Deutschland und international. J. Health Monitoring 5 (S4): 2–16. doi: 10.25646/7023.  
63.    Poethko-Müller C, Prütz F, Buttmann-Schweiger N, Fiebig J, Sarganas Margolis G, Seeling S, Thamm R, Baumann J, Hamouda O, Offergeld R, Schaade L, Lampert T, Neuhauser H (2020): German and international studies on SARS-CoV-2 seroprevalence. J. Health Monitoring 5 (S4): 2–15. doi: 10.25646/7024.  
64.    Rentzsch R, Deneke C, Nitsche A, Renard BY (2020): Predicting bacterial virulence factors – evaluation of machine learning and negative data strategies. Brief. Bioinform. 21 (5): 1596–1608. Epub Sep 25. doi: 10.1093/bib/bbz076.  
65.    Reva ON, Larisa SA, Mwakilili AD, Tibuhwa D, Lyantagaye S, Chan WY, Lutz S, Ahrens CH, Vater J, Borriss R (2020): Complete genome sequence and epigenetic profile of Bacillus velezensis UCMB5140 used for plant and crop protection in comparison with other plant-associated Bacillus strains. Appl. Microbiol. Biotechnol. 104 (17): 7643-7656. Epub Jul 10. doi: 10.1007/s00253-020-10767-w.  
66.    Rexroth U, Hamouda O, Hanefeld J, Ruehe B, Wieler LH, Schaade L (2020): Letter to the editor: Wide indication for SARS-CoV-2-testing allowed identification of international risk areas during the early phase of the COVID-19 pandemic in Germany. Euro Surveill. 25 (23): pii=2001119. doi: 10.2807/1560-7917.ES.2020.25.23.2001119.  
67.    Rohde A, Papp S, Feige P, Grunow R, Kaspari O (2020): Development of a novel selective agar for the isolation and detection of Bacillus anthracis. J. Appl. Microbiol. 129 (2): 311-318. Epub Feb 12. doi: 10.1111/jam.14615.  
68.    Sala C, Mordhorst H, Grützke J, Brinkmann A, Petersen TN, Poulsen C, Cotter PD, Crispie F, Ellis RJ, Castellani G, Amid C, Hakhverdyan M, Guyader SL, Manfreda G, Mossong J, Nitsche A et al. (2020): Metagenomics-based proficiency test of smoked salmon spiked with a mock community. Microorganisms 8 (12): E1861. Epub Nov 25. doi: 10.3390/microorganisms8121861.  
69.    Santos-Hövener C, Busch MA, Koschollek C, Schlaud M, Hoebel J, Hoffmann R, Wilking H, Haller S, Allen J, Wernitz J, Butschalowsky H, Kuttig T, Stahlberg S, Strandmark S, Schaffrath Rosario A, Gößwald A, Nitsche A, Hamouda O, Drosten C, Corman V, Wieler LH, Schaade L, Lampert T (2020): Seroepidemiological study on the spread of SARS-CoV-2 in populations in especially affected areas in Germany – Study protocol of the CORONA-MONITORING lokal study. J. Health Monitoring 5 (S5): 2–16. doi: 10.25646/7053.  
70.    Santos-Hövener C, Busch MA, Koschollek C, Schlaud M, Hoebel J, Hoffmann R, Wilking H, Haller S, Allen J, Wernitz J, Butschalowsky H, Kuttig T, Stahlberg S, Strandmark S, Schaffrath Rosario A, Gößwald A, Nitsche A, Michel J, Hamouda O, Drosten C, Corman V, Wieler LH, Schaade L, Lampert T (2020): Seroepidemiologische Studie zur Verbreitung von SARS-CoV-2 in der Bevölkerung an besonders betroffenen Orten in Deutschland – Studienprotokoll von CORONA-MONITORING lokal. J. Health Monitoring 5 (S5): 2–18. doi: 10.25646/7052.2.  
71.    Santos-Hövener C, Neuhauser H, Schaffrath Rosario A, Busch MA, Schlaud M, Hoffmann R, Gößwald A, Koschollek C, Hoebel J, Allen J, Haack-Erdmann A, Brockmann S, Ziese T, Nitsche A, Michel J, Haller S, Wilking H, Hamouda O, Corman VM, Drosten C, Schaade L, Wieler LH; CoMoLo Study Group Lampert T (2020): Serology- and PCR-based cumulative incidence of SARS-CoV-2 infection in adults in a successfully contained early hotspot (CoMoLo study), Germany, May to June 2020. Euro Surveill. 25 (47): pii=2001752. doi: 10.2807/1560-7917.ES.2020.25.47.2001752.  
72.    Scholtzek AD, Hanke D, Eichhorn I, Walther B et al. (2020): Heterogeneity of antimicrobial susceptibility testing results for sulfamethoxazole/trimethoprim obtained from clinical equine Staphylococcus aureus isolates using different methods. Vet. Microbiol. 242 (March): 108600. Epub Feb 1. doi: 10.1016/j.vetmic.2020.108600.  
73.    Seifried J, Böttcher S, Albrecht S, Stern D, Willrich N, Zacher B, Mielke M, Rexroth U, Hamouda O (2020): Erfassung der SARS-CoV-2-Testzahlen in Deutschland (Stand 26.8.2020). Epid. Bull. 2020 (35): 11–14. doi: 10.25646/7113.  
74.    Seifried J, Böttcher S, Albrecht S, Stern D, Willrich N, Zacher B, Mielke M, Rexroth U, Hamouda O (2020): Erfassung der SARS-CoV-2-Testzahlen in Deutschland (Stand 2.9.2020). Epid. Bull. 2020 (36): 15–18. doi: 10.25646/7123.  
75.    Seifried J, Böttcher S, Albrecht S, Stern D, Willrich N, Zacher B, Mielke M, Rexroth U, Hamouda O (2020): Erfassung der SARS-CoV-2-Testzahlen in Deutschland (Stand 9.9.2020). Epid. Bull. 2020 (37): 12–15. doi: 10.25646/7132.  
76.    Seifried J, Böttcher S, Albrecht S, Stern D, Willrich N, Zacher B, Mielke M, Rexroth U, Hamouda O (2020): Erfassung der SARS-CoV-2-Testzahlen in Deutschland (Stand 16.9.2020). Epid. Bull. 2020 (38): 15–18. doi: 10.25646/7137.  
77.    Seifried J, Böttcher S, Albrecht S, Stern D, Willrich N, Zacher B, Mielke M, Rexroth U, Hamouda O (2020): Erfassung der SARS-CoV-2-Testzahlen in Deutschland (Stand 30.9.2020). Epid. Bull. 2020 (40): 8–11. doi: 10.25646/7158.  
78.    Semini G, Paape D, Blume M, Sernee MF, Peres-Alonso D, Calvignac-Spencer S, Doellinger J, Jehle S, Saunders E, McConville MJ, Aebischer T (2020): Leishmania encodes a bacterium-like 2,4-dienoyl-coenzyme A reductase that is required for fatty acid β-oxidation and intracellular parasite survival. mBio 11 (3): pii: e01057-20. Epub Jun 2. doi: 10.1128/mBio.01057-20.  
79.    Şendur SN, Ergünay K, Akyön Y, Brinkmann A, Serdar M, Dağdelen S, Erbaş T, Nitsche A et al. (2020): Probable alterations in fecal bacterial microbiota by somatostatin receptor analogs in acromegaly. Turk. J. Biochem. 5 (6): 695–70. Epub Oct 22. doi: 10.1515/tjb-2020-0293.  
80.    Staat D, Stern D, Seifried J, Böttcher S, Albrecht S, Willrich N, Zacher B, Mielke M, Rexroth U, Hamouda O (2020): Erfassung der SARS-CoV-2-Testzahlen in Deutschland (Stand 4.11.2020). Epid. Bull. 2020 (45): 16–20. doi: 10.25646/7202.  
81.    Sundell D, Uneklint I, Öhrman C, Salomonsson E, Karlsson L, Bäckman S, Näslund J, Sjödin A, Forsman M, Appelt S, Drechsel O, Jacob D, Heuner K, Myrtennäs K (2020): Complete genome sequence of Francisella tularensis subsp. holarctica strain A271_1 (FDC408), isolated from a Eurasian beaver (Castor fiber). Microbiol. Resour. Announc. 9 (45): e00738-20. Epub Nov 5. doi: 10.1128/MRA.00738-20.  
82.    Surtees RA, Stern D, Ahrens K, Kromarek N, Lander A, Kreher P, Weiss S, Hewson R, Punch EK, Barr JN, Witkowski PT, Couacy-Hymann E, Marzi A, Dorner BG, Kurth A (2020): Development of a multiplex microsphere immunoassay for the detection of antibodies against highly pathogenic viruses in human and animal serum samples. PLoS Negl. Trop. Dis. 14 (10): e0008699. Epub Oct 23. doi: 10.1371/journal.pntd.0008699.  
83.    Tam LTT, Jähne J, Luong PT, Thao LTP, Chung LTK, Schneider A, Blumenscheit C, Lasch P et al. (2020): Draft genome sequences of 59 endospore-forming gram-positive bacteria associated with crop plants grown in Vietnam. Microbiol. Resour. Announc. 9 (47): e01154-20. Epub Nov 19. doi: 10.1128/MRA.01154-20.  
84.    Ullrich A, Schranz M, Rexroth U, Hamouda O, Schaade L, Diercke M, Boender TS (collaborators: Brodhun B, Buda S, Dudareva S, Eckmanns T, Enkelmann J, Faber M, Falkenhorst G, Frank C, Gunsenheimer-Bartmeyer B, Hellenbrand W, Jansen K, Klingeberg A, Kröger S, Mankertz A, Marcus U, Matysiak-Klose D, Reuß A, Rosner B, Schilling J, Siedler A, Schmidt N, Zacher B, Zimmermann R) (2020): The impact of the COVID-19 pandemic and associated public health measures on other notifiable infectious diseases under national surveillance in Germany, week 1–2016 – week 32–2020. SSRN: Epub 2020 Dec 14. Available at SSRN: or  
85.    van der Toorn W, Oh DY, Bourquain D, Michel J, Krause E, Nitsche A, von Kleist M; working group on SARS-CoV-2 Diagnostics at RKI (2020): COVIDStrategyCalculator: A standalone software to assess testing- and quarantine strategies for incoming travelers, contact person management and de-isolation. medRxiv: Epub Nov 19. doi: 10.1101/2020.11.18.20233825.  
86.    von Kleist M, Ruehe B, Oh DY, Nitsche A, Haas W, Stoliaroff-Pépin A, Eckmanns T, Abu Sin M, van der Toorn W, Jenny MA, Mielke M, Herzog C, Wieler LH (2020): Abwägung der Dauer von Quarantäne und Isolierung bei COVID-19. Epid. Bull. 2020 (39): 3–11. doi: 10.25646/7140. (online vorab 23.9.2020).  87.    Wamp S, Rutter ZJ, Rismondo J, Jennings CE, Möller L, Lewis RJ, Halbedel S (2020): PrkA controls peptidoglycan biosynthesis through the essential phosphorylation of ReoM. eLife 9: e56048. Epub May 29. doi: 10.7554/eLife.56048.
88.    Wilk L (2020): Protocol for Proteome Analysis of Group A Streptococcus. In: Proft T, Loh J (Hrsg), Group A Streptococcus, Methods in Molecular Biology, vol. 2136. New York, NY: Humana, pp.135-144. Epub May 20. doi: 10.1007/978-1-0716-0467-0_9.  
89.    Wozniak DM, Lavender KJ, Prescott J, Spengler JR (2020): The utility of human immune system mice for high-containment viral hemorrhagic fever research. Vaccines (Basel) 8 (1): pii: E98. Epub Feb 22. doi: 10.3390/vaccines8010098.  
90.    Zoppo M, Di Luca M, Franco M, Rizzato C, Lupetti A, Stringaro A, De Bernardis F, Schaudinn C et al. (2020): CpALS4770 and CpALS4780 contribution to the virulence of Candida parapsilosis. Microbiol. Res. 231 (1): 126351. Epub 2019 Oct 18. doi: 10.1016/j.micres.2019.126351.

5. Briefly describe the biological defence work carried out at the facility, including type(s) of micro-organisms(9) and/or toxins studied, as well as outdoor studies of biological aerosols.

The Centre for Biological Threats and Special Pathogens is divided into a Federal Information Centre for Biological Threats and Special Pathogens (Informationsstelle des Bundes für Biologische Gefahren und Spezielle Pathogene, IBBS) and six units (ZBS 1-6). These are briefly described below.
The responsibility of the Federal Information Centre for Biological Threats and Special Pathogens (IBBS) is to strengthen national public health preparedness and response capabilities to biological threats caused by highly pathogenic or bioterrorism-related agents ("special pathogens"). IBBS provides support for the public health sector regarding early detection, situation assessment and response to unusual biological incidents related to bioterrorism or any natural occurrence or accidental release of highly pathogenic agents. Key aspects of activity are 1) preparedness and response planning for incidents related to special pathogens, and 2) response to bioterrorism or any unusual biological incident caused by special pathogens. IBBS heads the office of the German “Permanent Working Group of Competence and Treatment Centres for High Consequence Infectious Diseases” (Ständiger Arbeitskreis der Kompetenz- und Behandlungszentren für Krankheiten durch hochpathogene Erreger, STAKOB).
ZBS 1, the Unit for Highly Pathogenic Viruses, is responsible for the establishment of diagnostic methods to detect high-risk pathogens, in particular imported viruses and viruses that could be used for bioterrorist attacks, for the establishment of methods to detect genetically modified viruses, for the development of antigen-based detection methods for risk category 3 pathogens (eventually, risk category 4 pathogens), for the development of rapid and sensitive nucleic acid-based detection methods for the identification, characterisation and differentiation of pathogens of high-risk groups, for the development of strategies for the combat and prevention of infections with highly pathogenic viruses, for research on these pathogens in order to improve both therapy and prophylaxis, for research on mechanisms of pathogenesis of both wild-type viruses and genetically modified viruses that could be used as bioweapons, for the development of SOPs (standard operating procedures) for diagnostics, for the provision of reference samples, standards and materials for diagnostics, for the quality management and further development of detection methods based on serologic or virologic parameters or the pathogen’s molecular biology including interlaboratory experiments, and for the organisation of collaborations with European and international high level disease safety laboratories. ZBS1 hosts the Consultant Laboratory for Poxviruses.
ZBS2, the Unit for Highly Pathogenic Microorganisms, is responsible for the organisation of the diagnostics of samples with bioterrorism suspicion within ZBS, for the development and optimisation of microbiological, molecular biological and immunological detection systems for the identification, characterisation and differentiation of highly pathogenic microorganisms, for the management of a culture collection with highly pathogenic and other relevant microorganisms, for the supply of reference materials for diagnostics of relevant microbial pathogens within the framework of cooperative projects, provides proficiency tests (in compliance to international standards described in the DIN EN ISO/IEC 17043) using material of highly pathogenic bacteria  for quality assurance measures in the field of diagnostics (SHARP EU-DG SANTE, RefBio UNSGM), for research in the field of epidemiology, pathogenesis and genetics of selected highly pathogenic bacteria with a focus on B. anthracis-like bacteria (Bacillus cereus biovar anthracis) and F. tularensis, hosting the national Consultant Laboratories for Tularemia and for Bacillus anthracis pathogens, for a Working Group “Cellular interactions of bacterial pathogens” with a focus on F. tularensis and Legionella research, for the development and testing of decontamination and disinfection processes in particular for bioterrorist attacks, and for studies on the evidence and tenacity of highly pathogenic microorganisms under different environmental conditions. For these activities, the unit is running a BSL 3 laboratory.
ZBS3, the Unit for Biological Toxins, is responsible for the diagnostics of plant and microbial toxins that could be used for bioterrorist attacks using techniques based on cell biological, genetical and serological parameters, as well as chromatographic methods and mass spectroscopy, for the development of SOPs for diagnostics, for the provision of reference samples, reference bacterial strains and standards, and storage of diagnostic material, for the adaptation of the diagnostic materials to the expected sample material, for the development of strategies for the detection of novel and modified toxins and agents, for research on the pathogenesis of the diseases induced, for interlaboratory experiments to assure the quality of diagnostics, for decontamination, for contribution to the development of standard therapies, and for characterisation of adherence/colonisation factors in toxin-producing and tissue-damaging bacteria. Moreover, ZBS3 hosts the national Consultant Laboratory for Neurotoxin-producing Clostridia (botulism, tetanus).
ZBS4, the Unit for Advanced Light and Electron Microscopy, is responsible for the rapid diagnostic electron microscopy (EM) of pathogens (primary diagnostics, identification and differentiation of bacterial and viral pathogens in environmental and patient samples), for the morphological characterisation and classification of both novel and rare pathogens by EM, for the development, testing and standardisation of preparation methods for diagnostic EM of pathogens, for the organisation of an international quality assurance testing scheme and of advanced training courses to preserve and improve quality standards in diagnostic EM, and for light and electron microscopy investigations of pathogens and mechanisms of their infectivity, pathogenicity or tenacity. ZBS4 is the core facility for digital photography, image documentation and for light and electron microscopy at the RKI. It hosts the Consultant Laboratory for Diagnostic Electron Microscopy of Infectious Pathogens.
ZBS5, the Unit for Biosafety Level 4 Laboratory, is responsible for operating the biosafety level 4 (BSL-4) laboratory within the RKI, for the establishment of diagnostic methods and diagnostic of pathogens in biosafety level 4, for the development of strategies for the prevention, decontamination and control of highly pathogenic viruses together with IBBS and ZBS 1, for the development of decontamination and disinfection measures for BSL-4 pathogens, for investigating the ability of BSL-4 pathogens to survive in biological and environmental samples, and for participation in and organisation of interlaboratory tests for quality assurance of diagnostics (national and international).
ZBS6, the Unit for Proteomics and Spectroscopy, is responsible for the characterisation of highly pathogenic microorganisms by means of proteomic techniques (MALDI-TOF mass spectrometry [MS] and LC-MS) and chem- and bioinformatics, for research on the molecular and structural bases underlying the proteinaceous seeding activity of prions and other self-replicating protein particles (“prionoids”) in transmissible and non-transmissible proteinopathies, for proteomics and molecular biology of proteinopathies and neurodegenerative diseases, for the rapid detection of pathogens by vibrational (infrared and Raman) spectroscopy and microspectroscopy, for the development of methods for the characterisation of agents with bioterrorism potential based on confocal Raman microspectroscopy (CRM) and for the characterisation of cells, cell clusters and tissue structures for pathologically and/or chronically degenerative processes by means of microspectroscopic techniques (Raman, IR microspectroscopy and imaging) in combination with modern methods of bioinformatics. ZBS6 hosts the Research Group “Prions and Prionoids”
A list of highly pathogenic biological agents and toxins for which detection methods are established at the RKI can be obtained using the following link: (in German). The list contains abrin (Abrus precatorius), Bacillus anthracis, Brucella spp., Burkholderia mallei and pseudomallei, Clostridium botulinum toxins, Clostridium tetani toxin, Coxiella burnetii, Francisella tularensis, ricin (Ricinus communis), staphylococcal enterotoxin B (Staphylococcus aureus), Vibrio cholera, Yersinia pestis, and a number of viruses, e.g. dengue virus, yellow fever virus, Variola and other pox viruses, Venezuelan equine encephalomyelitis virus, viral haemorrhagic fever viruses, and yellow fever virus. Please note that for several of the agents listed only diagnostics are developed while no research on the pathogen itself is carried out, e.g. smallpox virus.
Outdoor studies of biological aerosols have not been conducted.

(9) Including viruses and prions.