2. Where is it located (include both address and geographical location)?
(52°32' N 13°20' E)
(52°32' N 13°20' E)
4. The organizational structure of each facility
(ii) Division of personnel
(iii) Division of personnel by category
Bacteriology, Biology, Biochemistry, Bioinformatics, Biotechnology, Cell biology, Chemistry, Chemometrics, Genomics, Human biology, Immunology, Laboratory medicine, Medicine, Microbiology, Molecular biology, Molecular medicine, Pharmacology, Prion research, Proteomics, Spectroscopy, Structural biology, Toxicology, Veterinary medicine, Virology, Zoology
Bernhard Nocht Institute for Tropical Medicine Hamburg, Federal Foreign Office, Federal Ministry for Economic Affairs and Energy, Federal Ministry of Health, Federal Ministry for Education and Research, Federal Office of Civil Protection and Disaster Assistance, German Research Foundation, Society for International Cooperation.
European Commission, foreign governmental agencies, non-governmental organisations, Welcome Trust.
There is no funding by the Ministry of Defence.
(vii) What are the funding levels for the following programme areas:
Scientists are encouraged to publish their results in peer reviewed scientific journals as well as present their work at national and international professional meetings.
The Robert Koch Institute signed the Berlin Declaration on Open Access to Knowledge in the Sciences and Humanities, available at http://oa.mpg.de/lang/en-uk/berlin-prozess/berliner-erklarung/.
Under the Dual Use Regulations of the Robert Koch Institute scientists are required to assess the dual use potential of their research before a project is started, during the project period and before results are published.
1. Aepfelbacher M, Bauerfeind U, Bekeredjian-Ding I, Blümel J, Burger R, Funk M, Gröner A, Gürtler L, Heiden M, Hildebrandt M, Jansen B, Offergeld R, Pauli G, Schlenkrich U, Schottstedt V, Seitz R, Stahl D, Strobel J, Willkommen H, Hauer B (2018): Mycobacterium tuberculosis. Stellungnahmen des Arbeitskreises Blut des Bundesministeriums für Ge-sundheit. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 61 (1): 100–115. Epub 2017 Dec 27. doi: 10.1007/s00103-017-2660-4.
2. Andrusch A, Dabrowski PW, Klenner J, Tausch SH, Kohl C, Osman AA, Renard BY, Nitsche A (2018): PAIPline: Pathogen identification in metagenomic and clinical next generation sequencing samples. Bioinformatics 34 (17): i715–i721. Epub Sep 8. doi: 10.1093/bioinformatics/bty595.
3. Behm LVJ, Schlenther I et al. (2018): A simple approach for the precise measurement of surface temperature distributions on the microscale under dry and liquid conditions based on thin Rhodamine B films. Sens. Actuators B Chem. 255 (2): 2023–2031. Epub 2017 Sep 4. doi: 10.1016/j.snb.2017.09.001.
4. Brekle V, Weiß C, Kolobaric Z, Schulz-Weidhaas C, Vogelmann R (2018): Ambulant praktiz-ierende Ärzte in Deutschland unzureichend auf Ebolafieber vorbereitet. Gesund-heitswesen: Epub May 22. doi: 10.1055/a-0600-2512.
5. Brinkmann A, Dinçer E, Polat C, Hekimoğlu O, Hacıoğlu S, Földes K, Özkul A, Öktem IMA, Nitsche A, Ergünay K (2018): A metagenomic survey identifies Tamdy orthonairovirus as well as divergent phlebo-, rhabdo-, chu- and flavi-like viruses in Anatolia, Turkey. Ticks Tick Borne Dis. 9 (5): 1173-1183. Epub Apr 27. doi: 10.1016/j.ttbdis.2018.04.017.
6. Burckhardt F, Hoffmann D, Jahn K, Heuner K, Jacob D, Vogt M, Bent S, Grunow R, Zanger P (2018): Oropharyngeal tularemia from freshly pressed grape must. N. Engl. J. Med. 379 (2): 197–199. Epub Jul 12. doi: 10.1056/NEJMc1800353.
7. Burwinkel M, Lutzenberger M, Heppner FL, Schulz-Schaeffer W, Baier M (2018): Intrave-nous injection of beta-amyloid seeds promotes cerebral amyloid angiopathy (CAA). Acta Neuropathol. Commun. 6 (23): 1-6. doi: 10.1186/s40478-018-0511-7.
8. Busch A, Elschner MC, Jacob D, Grunow R, Tomaso H (2018): Draft genome sequence of Bacillus anthracis strain sterne 09RA8929. Microbiol. Resour. Announc. 7 (14): e00972-18. Epub Oct 11. doi: 10.1128/MRA.00972-18.
9. Busche T, Hillion M, Loi VV, Berg D, Walther B, Semmler T, Strommenger B, Witte W, Cuny C et al. (2018): Comparative secretome analyses of human and zoonotic Staphylococcus aureus isolates of CC8, CC22 and CC398. Mol. Cell. Proteomics 17 (12): 2411-2433. Epub Sep 10. doi: 10.1074/mcp.RA118.001036.
10. Dadi TH, Siragusa E, Piro VC, Andrusch A, Seiler E, Renard BY, Reinert K (2018): DREAM-Yara: an exact read mapper for very large databases with short update time. Bioinformat-ics 34 (17): i766–i772. Epub Sep 1. doi: 10.1093/bioinformatics/bty567.
11. Dietsche J, Metzner M, Messelhauser U, Mansfeld R, Sauter-Louis C, Hormansdorfer S, Hoedemaker M, Dorner MB et al. (2018): Bedeutung von potenziell toxinogenen Clostrid-ium spp. bei Herdengesundheitsproblemen in bayerischen Milchviehbeständen. Berl. Münch. Tierärztl. Wochensch. 131 (1-2): 44-52. doi: 10.2376/0005-9366-16078.
12. Doellinger J, Grossegesse M, Nitsche A, Lasch P (2018): DMSO as a mobile phase additive enhances detection of ubiquitination sites by nanoLC-ESI-MS/MS. J. Mass Spectrom. 53 (2): 183–187. Epub 2017 Nov 29. doi: 10.1002/jms.4049.
13. Domingo C, Charrel RN et al. (2018): Yellow fever in the diagnostics laboratory. Emerg. Microbes Infect. 7 (1): 129. Epub Jul 12. doi: 10.1038/s41426-018-0128-8.
14. Domingo C, Ellerbrok H, Koopmans M, Nitsche A et al. (2018): Need for additional capacity and improved capability for molecular detection of yellow fever virus in European Expert Laboratories: External Quality Assessment, March 2018. Euro Surveill. 23 (28): pii=1800341. doi: 10.2807/1560-7917.ES.2018.23.28.1800341.
15. Dupke S, Barduhn A, Franz T, Leendertz FH, Couacy-Hymann E, Grunow R, Klee SR (2018): Analysis of a newly discovered antigen of Bacillus cereus biovar anthracis for its suitability in specific serological antibody testing. J. Appl. Microbiol.: Epub Sep 25. doi: 10.1111/jam.14114.
16. Engelke AD, Gonsberg A, Thapa S, Jung S, Ulbrich S, Seidel RP, Basu S, Multhaup G, Baier M et al. (2018): Dimerization of the cellular prion protein inhibits propagation of scrapie prions. J. Biol. Chem. 293 (21): 8020-8031. Epub Apr 10. doi: 10.1074/jbc.RA117.000990.
17. Esparza J, Nitsche A, Damaso CR (2018): Beyond the myths: Novel findings for old para-digms in the history of the smallpox vaccine. PLoS Pathog. 14 (7): e1007082. Epub Jul 26. doi: 10.1371/journal.ppat.1007082.
18. Faber M, Heuner K, Jacob D, Grunow R (2018): Tularemia in Germany – A re-emerging zoonosis. Front. Cell. Infect. Microbiol. 8: 40. Epub Feb 16. doi: 10.3389/fcimb.2018.00040.
19. Fuchs FM, Holland G, Moeller R, Laue M (2018): Directed freeze-fracturing of Bacillus sub-tilis biofilms for conventional scanning electron microscopy. J. Microbiol. Methods 152: 165-172. Epub Aug 17. doi: 10.1016/j.mimet.2018.08.005.
20. Funk M, Heiden M, Willkommen H, Aepfelbacher M, Bauerfeind U, Bekeredjian-Ding I, Blümel J, Burger R, Doll M, Gröner A, Gürtler L, Hildebrandt M, Jansen B, Offergeld R, Pauli G et al. (2018): Pathogen-Inaktivierungssysteme für Thrombozytenkonzentrate. Bun-desgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 61 (7): 874–893. Epub Jun 21. doi: 10.1007/s00103-018-2766-3.
21. Garrido JL, Presscott J et al. (2018): Two recombinant human monoclonal antibodies that protect against lethal Andes hantavirus infection in vivo. Sci. Transl. Med. 10 (468): eaat6420. Epub Nov 21. doi: 10.1126/scitranslmed.aat6420.
22. Gelderblom HR, Madeley D (2018): Rapid viral diagnosis of orthopoxviruses by electron microscopy: optional or a must? Viruses 10 (4): 142. Epub Mar 22. doi: 10.3390/v10040142.
23. Gertler M, Loik S, Kleine C, Matuschek A, Gresser N, diGennaro M, Fabricius A, Kratz T et al. (2018): Ebolafieberepidemie in Westafrika – schnelle und praxisnahe Ausbildung: Das Vorbereitungstraining für Einsatzkräfte des Deutschen Roten Kreuzes, anderer Hilfsorgan-isationen und der Bundeswehr, Würzburg, 2014 und 2015. Bundesgesundheitsblatt – Ge-sundheitsforschung – Gesundheitsschutz 61 (4): 394-403. Epub Feb 26. doi: 10.1007/s00103-018-2710-6.
24. Girault G, Wattiau P, Saqib M, Martin B, Vorimore F, Singha H, Engelsma M, Roest HJ, Spicic S, Grunow R et al. (2018): High-resolution melting PCR analysis for rapid genotyping of Burkholderia mallei. Infect. Genet. Evol. 63 (Sept): 1-4. Epub May 8. doi: 10.1016/j.meegid.2018.05.004.
25. Grossegesse M, Doellinger J, Fritsch A, Laue M, Piesker J, Schaade L, Nitsche A (2018): Global ubiquitination analysis reveals extensive modification and proteasomal degradation of cowpox virus proteins, but preservation of viral cores. Sci. Rep. 8 (1): 1807. Epub Jan 29. doi: 10.1038/s41598-018-20130-9.
26. Gruber CEM, Giombini E, Selleri M, Tausch SH, Andrusch A, Tyshaieva A, Cardeti G, Lo-renzetti R, De Marco L, Carletti F, Nitsche A et al. (2018): Whole genome characterization of Orthopoxvirus (OPV) Abatino, a zoonotic virus representing a putative novel clade of Old World orthopoxviruses. Viruses 10 (10): pii: E546. Epub Oct 6. doi: 10.3390/v10100546.
27. Gürtler L, Aepfelbacher M, Bauerfeind U, Bekeredjian-Ding I, Blümel J, Burger R, Doll M, Funk M, Gröner A, Heiden M, Hildebrandt M, Jansen B, Offergeld R, Pauli G et al. (2018): Filovirus – Auslöser von hämorrhagischem Fieber. Bundesgesundheitsblatt – Gesund-heitsforschung – Gesundheitsschutz 61 (7): 894–907. EpubJun 21. doi: 10.1007/s00103-018-2757-4.
28. Kirubakar G, Murugaiyan J, Schaudinn C, Dematheis F, Holland G, Eravci M, Weise C, Roesler U, Lewin A (2018): Proteome analysis of an M. avium mutant exposes a novel role of the bifunctional protein LysX in regulation of metabolic activity. J. Infect. Dis. 218 (2): 291–299. Epub Feb 19. doi: 10.1093/infdis/jiy100.
29. Koban R, Neumann M, Daugs A, Bloch O, Nitsche A, Langhammer S, Ellerbrok H (2018): A novel three-dimensional cell culture method enhances antiviral drug screening in primary human cells. Antivir. Res. 150 (2): 20-29. Epub 2017 Dec 7. doi: 10.1016/j.antiviral.2017.12.005.
30. Kohl C, Kurth A (2018): Tissue-based universal virus detection (TUViD-VM) protocol for vi-ral metagenomics. In: Moya A, Pérez Brocal V (Hrsg), The Human Virome – Methods and Protocols, Methods in Molecular Biology, vol. 1838. New York: Humana Press, pp. 15-23.
31. Kohl C, Tachedjian M, Todd S, Monaghan P, Boyd V, Marsh GA, Crameri G, Field H, Kurth A et al. (2018): Hervey virus: Study on co-circulation with Henipaviruses in Pteropid bats within their distribution range from Australia to Africa. PLoS One 13 (2): e0191933. Epub Feb 1. doi: 10.1371/journal.pone.0191933.
32. Lang C, Fruth A, Holland G, Laue M, Mühlen S, Dersch P, Flieger A (2018): Novel type of pilus associated with a Shiga-toxigenic E. coli hybrid pathovar conveys aggregative adher-ence and bacterial virulence. Emerg. Microbes Infect. 7 (1): 203. Epub Dec 5. doi: 10.1038/s41426-018-0209-8.
33. Lasch P, Noda I (2018): EXPRESS: Two-dimensional correlation spectroscopy (2D-COS) for analysis of spatially resolved vibrational spectra. Appl. Spectrosc.: Epub Nov 29. doi: 10.1177/0003702818819880.
34. Lasch P, Stämmler M et al. (2018): FT-IR hyperspectral imaging and artificial neural net-work analysis for rapid identification of pathogenic bacteria. Anal. Chem. 90 (15): 8896-8904. Epub Jun 26. doi: 10.1021/acs.analchem.8b01024.
35. Laue M, Han HM, Dittmann C, Setlow P (2018): Intracellular membranes of bacterial en-dospores are reservoirs for spore core membrane expansion during spore germination. Sci. Rep. 8 (1): 11388. Epub Jul 30. doi: 10.1038/s41598-018-29879-5.
36. Loka TP, Tausch SH, Dabrowski PW, Radonić A, Nitsche A, Renard BY (2018): PriLive: Pri-vacy-preserving real-time filtering for Next-Generation Sequencing. Bioinformatics 34 (14): 2376-2383. Epub Mar 6. doi: 10.1093/bioinformatics/bty128.
37. Lopez-Jimena B, Bekaert M, Bakheit M, Frischmann S, Patel P et al. (2018): Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype. PLoS Negl. Trop. Dis. 12 (5): e0006381. Epub May 29. doi: 10.1371/journal.pntd.0006381.
38. Makarava N, Savtchenko R, Lasch P, Beekes M et al. (2018): Preserving prion strain identi-ty upon replication of prions in vitro using recombinant prion protein. Acta Neuropathol. Commun. 6 (1): 92. Epub Sep 12. doi: 10.1186/s40478-018-0597-y.
39. Makarava N, Savtchenko R, Lasch P, Beekes M et al. (2018): Correction to: Preserving pri-on strain identity upon replication of prions in vitro using recombinant prion protein. Acta Neuropathol. Commun. 6 (1): 97. Epub Sep 24. doi: 10.1186/s40478-018-0601-6.
40. Martina P, Leguizamon M, Prieto CI, Sousa SA, Montanaro P, Draghi WO, Stämmler M, Bettiol M, de Carvalho CCCR, Palau J, Figoli C, Alvarez F, Benetti S, Lejona S, Vescina C, Ferreras J, Lasch P et al. (2018): Burkholderia puraquae sp. nov., a novel species of the Burkholderia cepacia complex isolated from hospital settings and agricultural soils. Int. J. Syst. Evol. Microbiol. 68 (1): 14-20. Epub 2017 Nov 2. doi: 10.1099/ijsem.0.002293.
41. Müller CSL, Laue M et al. (2018): Presence of Molluscum contagiosum virus within an ep-idermal cyst. J. Dtsch. Dermatol. Ges. 16 (9): 1144-1146. Epub Aug 21. doi: 10.1111/ddg.13633.
42. Öncü C, Brinkmann A, Günay F, Kar S, Öter K, Sarıkaya Y, Nitsche A, Linton YM, Alten B, Ergünay K (2018): West Nile virus, Anopheles flavivirus, a novel flavivirus as well as Meri-da-like rhabdovirus Turkey in field-collected mosquitoes from Thrace and Anatolia. Infect. Genet. Evol. 57 (1): 36-45. Epub 2017 Nov 8. doi: 10.1016/j.meegid.2017.11.003.
43. Polat C, Ergünay K, Irmak S, Erdin M, Brinkmann A, Çetintaş O, Çoğal M, Sözen M, Matur F, Nitsche A, Öktem ÍMA (2018): A novel genetic lineage of Tula orthohantavirus in Altai voles (Microtus obscurus) from Turkey. Infect. Genet. Evol.: Epub Nov 19. doi: 10.1016/j.meegid.2018.11.015.
44. Rausch S, Midha A, Kuhring M, Affinass N, Radonić A, Kühl AA, Bleich A, Renard BY, Hart-mann S (2018): Parasitic nematodes exert antimicrobial activity and benefit from micro-biota-driven support for host immune regulation. Front. Immunol. 9: 2282. Epub Oct 8. doi: 10.3389/fimmu.2018.02282.
45. Reusken CB, Mögling R, Smit PW, Grunow R et al. (2018): Status, quality and specific needs of Ebola virus diagnostic capacity and capability in laboratories of the two European preparedness laboratory networks EMERGE and EVD-LabNet. Euro Surveill. 23 (19): pii=17-00404. doi: 10.2807/1560-7917.ES.2018.23.19.17-00404.
46. Robert Koch-Institut (2018): RKI-Ratgeber Botulismus. Epid. Bull. 2018 (20): 189–195. doi: 10.17886/EpiBull-2018-025.
47. Romette JL, Prat CM, Gould EA, de Lamballerie X, Charrel R, Coutard B, Fooks AR, Bardsley M, Carroll M, Drosten C, Drexler JF, Günther S, Klempa B, Pinschewer D, Klimkait T, Avsic-Zupanc T, Capobianchi MR, Dicaro A, Ippolito G, Nitsche A et al. (2018): The European Virus Archive goes global: A growing resource for research. Antiviral Res. 158 (October): 127-134. Epub Jul 27. doi: 10.1016/j.antiviral.2018.07.017.
48. Sachse S, Hunger I (2018): Lage – Krise – Katastrophe. Eine Konzeptualisierung biolo-gischer Gefahrenlagen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitss-chutz: Epub Nov 26. doi: 10.1007/s00103-018-2846-4.
49. Sassi C, Nalls MA, Ridge PG et al.; ARUK Consortium Blumenau S, Thielke M, Josties C, Freyer D, Dietrich A, Hammer M, Baier M et al. (2018): Mendelian adult-onset leu-kodystrophy genes in Alzheimer's disease: critical influence of CSF1R and NOTCH3. Neu-robiol. Aging 66 (June): 179.e17-179.e29. Epub Feb 2. doi: 10.1016/j.neurobiolaging.2018.01.015.
50. Schottstedt V, Aepfelbacher M, Bauerfeind U, Bekeredjian-Ding I, Blümel J, Burger R, Funk M, Gröner A, Gürtler L, Heiden M, Hildebrandt M, Jansen B, Offergeld R, Pauli G et al. (2018): Humanes Cytomegalievirus (HCMV). Stellungnahmen des Arbeitskreises Blut des Bundesministeriums für Gesundheit. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 61 (1): 116–128. Epub 2017 Dec 27. doi: 10.1007/s00103-017-2661-3.
51. Sikorra S, Skiba M, Dorner MB, Weisemann J, Weil M, Valdezate S, Davletov B, Rummel A, Dorner BG et al. (2018): Botulinum neurotoxin F subtypes cleaving the VAMP-2 Q58–K59 peptide bond exhibit unique catalytic properties and substrate specificities. Toxins 10: 311. Epub Aug 1. doi: 10.3390/toxins10080311.
52. Soimala T, Lübke-Becker A, Schwarz S, Feßler AT, Huber C, Semmler T, Merle R, Gehlen H, Eule JC, Walther B (2018): Occurrence and molecular composition of methicillin-resistant Staphylococcus aureus isolated from ocular surfaces of horses presented with ophthal-mologic disease. Vet. Microbiol. 222 (Aug): 1–6. Epub Jun 13. doi: 10.1016/j.vetmic.2018.06.009.
53. Stark K, Wilking H, Frank C, Domingo Carrasco C, Michel J, Offergeld R (2018): West-Nil-Virus (WNV)-Infektion bei einem Vogel (Bartkauz) in Halle (Saale) nachgewiesen. Epid. Bull. 2018 (36): 400–402. doi: 10.17886/EpiBull-2018-045.
54. Stern D, von Berg L, Skiba M, Dorner MB, Dorner BG (2018): Replacing the mouse bioassay for diagnostics and potency testing of botulinum neurotoxins – progress and challenges. Berl. Munch. Tierarztl. Wochenschr.: Epub Jun 26. doi: 10.2376/0005-9366-17110.
55. Stern D, Weisemann J, Le Blanc A, von Berg L, Mahrhold S, Piesker J, Laue M, Luppa PB, Dorner MB, Dorner BG, Rummel A (2018): A lipid-binding loop of botulinum neurotoxin serotypes B, DC, and G is an essential feature to confer their exquisite potency. PLoS Pathogens 14 (5): e1007048. Epub May 2. doi: 10.1371/journal.ppat.1007048.
56. Tausch SH, Loka TP, Schulze JM, Andrusch A, Klenner J, Dabrowski PW, Lindner MS, Nitsche A, Renard BY (2018): PathoLive – Real time pathogen identification from meta-genomic Illumina datasets. BioRxiv: Epub Aug 31. doi: 10.1101/402370.
57. Tausch SH, Strauch B, Andrusch A, Loka TP, Lindner MS, Nitsche A, Renard BY (2018): Li-veKraken – Real-time metagenomic classification of Illumina data. Bioinformatics 34 (21): 3750–3752. Epub Jun 1. doi: 10.1093/bioinformatics/bty433.
58. Tlapák H, Köppen K, Rydzewski K, Grunow R, Heuner K (2018): Construction of a new phage integration vector pFIV-Val for use in different Francisella species. Front. Cell. In-fect. Microbiol. 8 (Mar): 75. Epub Mar 14. doi: 10.3389/fcimb.2018.00075.
59. Torelli F, Zander S, Ellerbrok H, Kochs G, Ulrich RG, Klotz C, Seeber F (2018): Recombinant IFN-γ from the bank vole Myodes glareolus: a novel tool for research on rodent reservoirs of zoonotic pathogens. Sci. Rep. 8 (1): 2797. Epub Feb 12. doi: 10.1038/s41598-018-21143-0.
60. Trübe P, Hertlein T, Mrochen DM, Schulz D, Jorde I, Krause B, Zeun J, Fischer S, Wolf SA, Walther B, Semmler T et al. (2018): Bringing together what belongs together: Optimizing murine infection models by using mouse-adapted Staphylococcus aureus strains. Int. J. Med. Microbiol.: Epub Oct 22. doi: 10.1016/j.ijmm.2018.10.007.
61. Vater J, Herfort S, Doellinger J, Weydmann M, Lasch P, Borriss R (2018): Genome mining of lipopeptide biosynthesis of Paenibacillus polymyxa E681 in combination with mass spectrometry – discovery of the lipoheptapeptide paenilipoheptin. Chembiochem. 19 (7): 744-753. Epub Jan 25. doi: 10.1002/cbic.201700615.
62. Veit O, Domingo C, Niedrig M et al.; Swiss HIV Cohort Study (2018): Long-term immune response to yellow fever vaccination in HIV-infected individuals depends on HIV-RNA suppression status: Implications for vaccination schedule. Clin. Infect. Dis. 66 (7): 1099-1108. Epub 2017 Nov 11. doi: 10.1093/cid/cix960.
63. Walther B, Klein KS, Barton AK, Semmler T, Huber C et al. (2018): Equine methicillin-resistant sequence type 398 Staphylococcus aureus (MRSA) harbor mobile genetic ele-ments promoting host adaptation. Front. Microbiol. 9: 2516. Epub Oct 24. doi: 10.3389/fmicb.2018.02516.
64. Wittwer M, Altpeter E, Pilo P, Gygli SM, Beuret C, Foucault F, Ackermann-Gäumann R, Karrer U, Jacob D, Grunow R et al. (2018): Population genomics of Francisella tularensis subsp. holarctica and its implication on the eco-epidemiology of tularemia in Switzerland. Front. Cell. Infect. Microbiol. 8 (Mar): 89. Epub Mar 22. doi: 10.3389/fcimb.2018.00089.
65. Woudstra C, Le Maréchal C, Souillard R, Anniballi F, Auricchio B, Bano L, Bayon-Auboyer MH, Koene M, Mermoud I, Brito RB, Lobato FCF, Silva ROS, Dorner MB, Fach P (2018): In-vestigation of Clostridium botulinum group III’s mobilome content. Anaerobe 49: 71-77. Epub 2017 Dec 26. doi: 10.1016/j.anaerobe.2017.12.009.
66. Woudstra C, Le Maréchal C, Souillard R, Anniballi F, Auricchio B, Bano L, Bayon-Auboyer MH, Koene M, Mermoud I, Brito RB, Lobato FCF, Silva ROS, Dorner MB, Fach P (2018): Er-ratum to "Investigation of Clostridium botulinum group III's mobilome content" [Anaerobe 49 (2018) 71-77]. Anaerobe: Epub Apr 18. doi: 10.1016/j.anaerobe.2018.04.008.
67. Wu H, Borriss R, Xue P, Liu F, Qiao J, Schneider A, Lasch P, Gao X (2018): Draft genome sequences of plant-associated Bacillus strains isolated from the Qinghai-Tibetan plateau. Genome Announc. 6 (19): e00375-18. Epub May 10. doi: 10.1128/genomeA.00375-18.
68. Živanović V, Semini G, Laue M, Drescher D, Aebischer T, Kneipp J (2018): Chemical map-ping of Leishmania infection in live cells by SERS microscopy. Anal. Chem. 90 (13): 8154-8161. Epub Jun 5. doi: 10.1021/acs.analchem.8b01451.
The Centre for Biological Threats and Special Pathogens is divided into a Federal Information Centre for Biological Threats and Special Pathogens (Informationsstelle des Bundes für Biologische Gefahren und Spezielle Pathogene, IBBS) and six departments units (ZBS 1-6). The departmentsThese are briefly described below. More information can be obtained on the RKI homepage: http://www.rki.de/EN/Content/Institute/DepartmentsUnits/CenterBioSafety/...
The responsibility of the Federal Information Centre for Biological Threats and Special Pathogens (IBBS) is to strengthen national public health preparedness and response capabilities to biological threats caused by highly pathogenic or bioterrorism-related agents ("special pathogens"). IBBS provides support for the public health sector regarding early detection, situation assessment and response to unusual biological incidents related to bioterrorism or any natural occurrence or accidental release of highly pathogenic agents. Key aspects of activity are 1) preparedness and response planning for incidents related to special pathogens, and 2) response to bioterrorism or any unusual biological incident caused by special pathogens. IBBS heads the office of the German “Permanent Working Group of Medical Competence and Treatment Centers Centres for High Consequence Infectious Diseases ” (Ständiger Arbeitskreis der Kompetenz- und Behandlungszentren für hochkontagiöse und lebensbedrohliche Erkrankungen Krankheiten durch hochpathogene Erreger, STAKOB). More information can be obtained using the following link: http://www.rki.de/EN/Content/Institute/DepartmentsUnits/CenterBioSafety/....
ZBS 1, the Unit for Highly Pathogenic Viruses, is responsible for the establishment of diagnostic methods to detect high-risk pathogens, in particular imported viruses and viruses that could be used for bioterrorist attacks, for the establishment of methods to detect genetically modified viruses, for the development of antigen-based detection methods for risk category 3 pathogens (eventually, risk category 4 pathogens), for the development of rapid and sensitive nucleic acid-based detection methods for the identification, characterisation and differentiation of pathogens of high-risk groups, for the development of strategies for the combat and prevention of infections with highly pathogenic viruses, for research on these pathogens in order to improve both therapy and prophylaxis, for research on mechanisms of pathogenesis of both wild-type viruses and genetically modified viruses that could be used as bioweapons, for the development of SOPs (standard operating procedures) for diagnostics, for the provision of reference samples, standards and materials for diagnostics, for the quality management and further development of detection methods based on serologic or virologic parameters or the pathogen’s molecular biology including interlaboratory experiments, and for the organisation of collaborations with European and international high level disease safety laboratories. ZBS1 hosts the Consultant Laboratory for Poxviruses. More information can be obtained using the following link: http://www.rki.de/EN/Content/Institute/DepartmentsUnits/CenterBioSafety/...
ZBS2, the Unit for Highly Pathogenic Microorganisms, is responsible for the organisation of the diagnostics of samples with bioterrorism suspicion within ZBS, for the development and optimisation of microbiological, molecular biological and immunological detection systems for the identification, characterisation and differentiation of highly pathogenic microorganisms, for the management of a culture collection with highly pathogenic and other relevant microorganisms, for the supply of reference materials for diagnostics of relevant microbial pathogens within the framework of cooperative projects, for quality assurance measures in the field of diagnostics (EMERGE EU-DG SANTE, RefBio UNSGM) for research in the field of epidemiology, pathogenesis and genetics of selected highly pathogenic bacteria with a focus on B. anthracis and F. tularensis, hosting the national Consultant Laboratories for Tularemia and for Bacillus anthracis pathogens, for a Working Group “Cellular interactions of bacterial pathogens” with a focus on F. tularensis and Legionella research , for the development and testing of decontamination and disinfection processes in particular for bioterrorist attacks, and for studies on the evidence and tenacity of highly pathogenic microorganisms under different environmental conditions. For these activities, the unit is running a BSL 3 laboratory. More information can be obtained using the following link: http://www.rki.de/EN/Content/Institute/DepartmentsUnits/CenterBioSafety/...
ZBS3, the Unit for Biological Toxins, is responsible for the diagnostics of plant and microbial toxins that could be used for bioterrorist attacks using techniques based on cell biological, genetical and serological parameters, as well as chromatographic methods and mass spectroscopy, for the development of SOPs for diagnostics, for the provision of reference samples, reference bacterial strains and standards, and storage of diagnostic material, for the adaptation of the diagnostic materials to the expected sample material, for the development of strategies for the detection of novel and modified toxins and agents, for research on the pathogenesis of the diseases induced, for interlaboratory experiments to assure the quality of diagnostics, for decontamination, for contribution to the development of standard therapies, and for characterisation of adherence/colonisation factors in toxin-producing and tissue-damaging bacteria. Moreover, ZBS3 hosts the national Consultant Laboratory for Neurotoxin-producing Clostridia (botulism, tetanus). More information can be obtained using the following links: http://www.rki.de/EN/Content/Institute/DepartmentsUnits/CenterBioSafety/... http://www.rki.de/DE/Content/Infekt/NRZ/Konsiliar/Clostridium_botulinum/... (in German).
ZBS4, the Unit for Advanced Light and Electron Microscopy, is responsible for the rapid diagnostic electron microscopy (EM) of pathogens (primary diagnostics, identification and differentiation of bacterial and viral pathogens in environmental and patient samples), for the morphological characterisation and classification of both novel and rare pathogens by EM, for the development, testing and standardisation of preparation methods for diagnostic EM of pathogens, and for the organisation of an international quality assurance testing scheme and of advanced training courses to preserve and improve quality standards in diagnostic EM, and for light and electron microscopy investigations of pathogens and mechanisms of their infectivity, pathogenicity or tenacity. ZBS4 is the core facility for digital photography, image documentation and for light and electron microscopy at the RKI. It hosts the Consultant Laboratory for Diagnostic Electron Microscopy of Infectious Pathogens. More information can be obtained using the following link: http://www.rki.de/EN/Content/Institute/DepartmentsUnits/CenterBioSafety/...
ZBS5, the Unit for Biosafety Level 4 Laboratory, is responsible for planning, setting up and later operating a the biosafety level 4 (BSL-4) laboratory within the RKI, for the establishment of diagnostic methods and diagnostic of pathogens in biosafety level 4, for the development of strategies for the prevention, decontamination and control of highly pathogenic viruses together with IBBS and ZBS 1, for the development of decontamination and disinfection measures for BSL-4 pathogens, for investigating the ability of BSL-4 pathogens to survive in biological and environmental samples, and for participation in and organisation of interlaboratory tests for quality assurance of diagnostics (national and international). More information can be obtained using the following link: http://www.rki.de/EN/Content/Institute/DepartmentsUnits/CenterBioSafety/...
ZBS6, the Unit for Proteomics and Spectroscopy, is responsible for the characterisation of highly pathogenic microorganisms by means of proteomic techniques (MALDI-TOF mass spectrometry [MS] and LC-MSand ESI-MS, 2D-PAGE) and chem- and bioinformatics, for research on the molecular and structural bases underlying the proteinaceous seeding activity of prions and other self-replicating protein particles (“prionoids”) in transmissible and non-transmissible proteinopathies, for proteomics and molecular biology of proteinopathies and neurodegenerative diseases, for the rapid detection of pathogens by vibrational (infrared and Raman) spectroscopy and microspectroscopy, for the development of methods for the characterisation of agents with bioterrorism potential based on confocal Raman microspectroscopy (CRM)surface-enhanced and tip-enhanced Raman spectroscopy (SERS, TERS), and for the characterisation of cells, cell clusters and tissue structures for pathologically and/or chronically degenerative processes by means of microspectroscopic techniques (Raman, IR microspectroscopy and imaginginfrared and MALDI microspectroscopy and imaging) in combination with modern methods of bioinformatics. ZBS6 hosts the Research Group “Prions and Prionoids.” and the Research Group “Proteinopathies / Neurodegenerative Diseases”. More information can be obtained using the following link: http://www.rki.de/EN/Content/Institute/DepartmentsUnits/CenterBioSafety/...
A list of highly pathogenic biological agents and toxins for which detection methods are established at the RKI can be obtained using the following link: http://www.rki.de/DE/Content/Infekt/Diagnostik_Speziallabore/speziallabo... (in German).
The list contains abrin (Abrus precatorius), Bacillus anthracis, Brucella spp., Burkholderia mallei and pseudomallei, neurotoxin-producing Clostridium spp. (C. baratii, C. botulinum, C. butyricum, C. tetani), Coxiella burnetii, Francisella tularensis, ricin (Ricinus communis), staphylococcal enterotoxins A and B (Staphylococcus aureus), Vibrio cholera, Yersinia pestis, and a number of viruses, e.g. dengue virus, FSME virus, Variola and other pox viruses, Venezuelan equine encephalomyelitis virus, viral haemorrhagic fever viruses, and yellow fever virus. Please note that for several of the agents listed only diagnostics are developed while no research on the pathogen itself is carried out, e.g. smallpox virus.
Outdoor studies of biological aerosols have not been conducted.
(9) Including viruses and prions.