Centre for Biological Threats and Special Pathogens (Zentrum für Biologische Gefahren und Spezielle Pathogene, ZBS) at the Robert Koch Institute (RKI)

2. Emplacement de l’installation (indiquer l’adresse et les coordonnées géographiques)
Nordufer 20, 13353 Berlin, Germany (52°32' N 13°20' E) Seestraße 10, 13353 Berlin, Germany (52°32' N 13°20' E)
3. Superficie des secteurs de laboratoire, par niveau de confinement
BL 4 , 438.00 m2
BL 3 , 268.00 m2
BL 2 , 5.821.00 m2
Superficie totale des laboratoires (m(2))
6527

4. Organigramme de chaque installation

(viii) Décrire brièvement la politique adoptée en matière de publication dans l’installation.

Scientists are encouraged to publish their results in peer reviewed scientific journals as well as present their work at national and international professional meetings.


The Robert Koch Institute signed the Berlin Declaration on Open Access to Knowledge in the Sciences and Humanities, available at http://oa.mpg.de/lang/en-uk/berlin-prozess/berliner-erklarung/. Under the Dual Use Regulations of the Robert Koch Institute scientists are required to assess the dual use potential of their research before a project is started, during the project period and before results are published.

(ix) Fournir une liste des documents et rapports accessibles au public qui portent sur les travaux publiés au cours des douze mois écoulés (indiquer les auteurs, les titres et les références complètes).
  • Appelt, S., Rohleder, A. M., Invernizzi, C., Mikulak, R., Brinkmann, A., Nitsche, A., Krüger, M., Dorner, M. B., Dorner, B. G., Scholz, H. C., & Grunow, R. (2021). Strengthening the United Nations Secretary-General’s Mechanism to an alleged use of bioweapons through a quality-assured laboratory response. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-23296-5
  • Beekes, M. (2021). The neural gut–brain axis of pathological protein aggregation in parkinson’s disease and its counterpart in peroral prion infections. Viruses, 13(7). https://doi.org/10.3390/v13071394
  • Blumenscheit, C., Pfeifer, Y., Werner, G., John, C., Schneider, A., Lasch, P., & Doellinger, J. (2021). Unbiased Antimicrobial Resistance Detection from Clinical Bacterial Isolates Using Proteomics. Analytical Chemistry, 93(44), 14599-14608. https://doi.org/10.1021/acs.analchem.1c00594
  • Böhm, S., vom Berge, K., Hierhammer, D., Jacob, D., Grunow, R., Riehm, J. M., Konrad, R., Dauer, M., Bouschery, B., Hossain, H., Schichtl, E., & Böhmer, M. M. (2021). Epidemiological investigation of a tularaemia outbreak after a hare hunt in Bavaria, Germany, 2018. Zoonoses and Public Health. https://doi.org/10.1111/zph.12899
  • Bokelmann, M., Vogel, U., Debeljak, F., Düx, A., Riesle‐sbarbaro, S., Lander, A., Wahlbrink, A., Kromarek, N., Neil, S., Couacy‐hymann, E., Prescott, J., & Kurth, A. (2021). Tolerance and persistence of ebola virus in primary cells from mops condylurus, a potential ebola virus reservoir. Viruses, 13(11). https://doi.org/10.3390/v13112186
  • Bourquain, D., Schrick, L., Tischer, B. K., Osterrieder, K., Schaade, L., & Nitsche, A. (2021). Replication of cowpox virus in macrophages is dependent on the host range factor p28/N1R. Virology Journal, 18(1). https://doi.org/10.1186/s12985-021-01640-x
  • Brehm, T. T., Berneking, L., Sena Martins, M., Dupke, S., Jacob, D., Drechsel, O., Bohnert, J., Becker, K., Kramer, A., Christner, M., Aepfelbacher, M., Schmiedel, S., Rohde, H., & German Vibrio Study, G. (2021). Heatwave-associated Vibrio infections in Germany, 2018 and 2019. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 26(41). https://doi.org/10.2807/1560-7917.ES.2021.26.41.2002041
  • Brehm, T. T., Dupke, S., Hauk, G., Fickenscher, H., Rohde, H., & Berneking, L. (2021). Non-cholera Vibrio species — currently still rare but growing danger of infection in the North Sea and the Baltic Sea. Internist, 62(8), 876-886. https://doi.org/10.1007/s00108-021-01086-x
  • Brinkmann, A., Uddin, S., Krause, E., Surtees, R., Dinçer, E., Kar, S., Hacıoğlu, S., Özkul, A., Ergünay, K., & Nitsche, A. (2021). Utility of a sequence-independent, single-primer-amplification (Sispa) and nanopore sequencing approach for detection and characterization of tick-borne viral pathogens. Viruses, 13(2). https://doi.org/10.3390/v13020203
  • Brinkmann, A., Ulm, S. L., Uddin, S., Förster, S., Seifert, D., Oehme, R., Corty, M., Schaade, L., Michel, J., & Nitsche, A. (2021). AmpliCoV: Rapid Whole-Genome Sequencing Using Multiplex PCR Amplification and Real-Time Oxford Nanopore MinION Sequencing Enables Rapid Variant Identification of SARS-CoV-2. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.651151
  • Buchholz, U., Abu Sin, M., Stoliaroff-Pépin, A., Michel, J., Nitsche, A., Schaade, L., Haas, W., & Bosse, I. (2021). Spektrum diagnostischer Proben zum Nachweis von SARS-CoV-2. Epidemiologisches Bulletin(17), 15-26. https://doi.org/10.25646/8309.2
  • Cloeckaert, A., Zygmunt, M. S., Scholz, H. C., Vizcaino, N., & Whatmore, A. M. (2021). Editorial: Pathogenomics of the Genus Brucella and Beyond. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.700734
  • Debuysscher, B. L., Scott, D. P., Rosenke, R., Wahl, V., Feldmann, H., & Prescott, J. (2021). Nipah virus efficiently replicates in human smooth muscle cells without cytopathic effect. Cells, 10(6). https://doi.org/10.3390/cells10061319
  • Dittmayer, C., Meinhardt, J., Radbruch, H., Radke, J., Heppner, B. I., Heppner, F. L., Stenzel, W., Holland, G., & Laue, M. (2021). Using EM data to understand COVID-19 pathophysiology – Authors’ reply. The Lancet, 397(10270), 197-198. https://doi.org/10.1016/S0140-6736(21)00032-5
  • Epping, L., Walther, B., Piro, R. M., Knüver, M. T., Huber, C., Thürmer, A., Flieger, A., Fruth, A., Janecko, N., Wieler, L. H., Stingl, K., & Semmler, T. (2021). Genome-wide insights into population structure and host specificity of Campylobacter jejuni. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-89683-6
  • Figoli, C. B., Garcea, M., Bisioli, C., Tafintseva, V., Shapaval, V., Gómez Peña, M., Gibbons, L., Althabe, F., Yantorno, O. M., Horton, M., Schmitt, J., Lasch, P., Kohler, A., & Bosch, A. (2021). A robust metabolomics approach for the evaluation of human embryos from: In vitro fertilization. Analyst, 146(20), 6156-6169. https://doi.org/10.1039/d1an01191j
  • Fink, K., Nitsche, A., Neumann, M., Grossegesse, M., Eisele, K. H., & Danysz, W. (2021). Amantadine inhibits sars-cov-2 in vitro. Viruses, 13(4). https://doi.org/10.3390/v13040539
  • Fischer, S., Laue, M., Müller, C. H. G., Meinertzhagen, I. A., & Pohl, H. (2021). Ultrastructural 3D reconstruction of the smallest known insect photoreceptors: The stemmata of a first instar larva of Strepsiptera (Hexapoda). Arthropod Structure and Development, 62. https://doi.org/10.1016/j.asd.2021.101055
  • Gertler, M., Krause, E., van Loon, W., Krug, N., Kausch, F., Rohardt, C., Rössig, H., Michel, J., Nitsche, A., Mall, M. A., Nikolai, O., Hommes, F., Burock, S., Lindner, A. K., Mockenhaupt, F. P., Pison, U., & Seybold, J. (2021). Self-collected oral, nasal and saliva samples yield sensitivity comparable to professionally collected oro-nasopharyngeal swabs in SARS-CoV-2 diagnosis among symptomatic outpatients. International Journal of Infectious Diseases, 110, 261-266. https://doi.org/10.1016/j.ijid.2021.07.047
  • Goerlitz, L., Tolksdorf, K., Buchholz, U., Prahm, K., Preuß, U., an der Heiden, M., Wolff, T., Dürrwald, R., Nitsche, A., Michel, J., Haas, W., & Buda, S. (2021). Monitoring of COVID-19 by extending existing surveillance for acute respiratory infections. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 64(4), 395-402. https://doi.org/10.1007/s00103-021-03303-2
  • Grossegesse, M., Leupold, P., Doellinger, J., Schaade, L., & Nitsche, A. (2021). Inactivation of Coronaviruses during Sample Preparation for Proteomics Experiments. Journal of Proteome Research, 20(9), 4598-4602. https://doi.org/10.1021/acs.jproteome.1c00320
  • Grossegesse, M., Nitsche, A., Schaade, L., & Doellinger, J. (2021). Application of spectral library prediction for parallel reaction monitoring of viral peptides. Proteomics, 21(7-8). https://doi.org/10.1002/pmic.202000226
  • Grote, U., Arvand, M., Brinkwirth, S., Brunke, M., Buchholz, U., Eckmanns, T., von Kleist, M., Niebank, M., Ruehe, B., Schulze, K., Stoliaroff-Pépin, A., Thanheiser, M., Schaade, L., Said, D., & Haas, W. (2021). Measures to cope with the COVID-19 pandemic in Germany: nonpharmaceutical and pharmaceutical interventions. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 64(4), 435-445. https://doi.org/10.1007/s00103-021-03306-z
  • Guito, J. C., Prescott, J. B., Arnold, C. E., Amman, B. R., Schuh, A. J., Spengler, J. R., Sealy, T. K., Harmon, J. R., Coleman-McCray, J. D., Kulcsar, K. A., Nagle, E. R., Kumar, R., Palacios, G. F., Sanchez-Lockhart, M., & Towner, J. S. (2021). Asymptomatic Infection of Marburg Virus Reservoir Bats Is Explained by a Strategy of Immunoprotective Disease Tolerance. Current Biology, 31(2), 257-270.e255. https://doi.org/10.1016/j.cub.2020.10.015
  • Henkel, S., Frohnecke, N., Maus, D., McConville, M. J., Laue, M., Blume, M., & Seeber, F. (2021). Toxoplasma gondii apicoplast-resident ferredoxin is an essential electron transfer protein for the MEP isoprenoid-biosynthetic pathway. J Biol Chem, 298(1), 101468. https://doi.org/10.1016/j.jbc.2021.101468
  • Holthaus, D., Kraft, M. R., Krug, S. M., Wolf, S., Müller, A., Betancourt, E. D., Schorr, M., Holland, G., Knauf, F., Schulzke, J. D., Aebischer, T., & Klotz, C. (2021). Dissection of barrier dysfunction in organoid-derived human intestinal epithelia induced by Giardia duodenalis. Gastroenterology. https://doi.org/10.1053/j.gastro.2021.11.022
  • Ivanusic, D., Madela, K., Burghard, H., Holland, G., Laue, M., & Bannert, N. (2021). tANCHOR: a novel mammalian cell surface peptide display system. Biotechniques, 70(1), 21-28. https://doi.org/10.2144/btn-2020-0073
  • Karagiannidis, C., Lang, K., Mikolajewska, A., Malin, J. J., Kluge, S., & Spinner, C. D. (2021). Therapie und Prophylaxe: Antikörper gegen COVID-19. . Deutsches Ärzteblatt, 118(47).
  • Karatuna, O., Dance, D. A. B., Matuschek, E., Åhman, J., Turner, P., Hopkins, J., Amornchai, P., Wuthiekanun, V., Cusack, T. P., Baird, R., Hennessy, J., Norton, R., Armstrong, M., Zange, S., Zoeller, L., Wahab, T., Jacob, D., Grunow, R., & Kahlmeter, G. (2021). Burkholderia pseudomallei multi-centre study to establish EUCAST MIC and zone diameter distributions and epidemiological cut-off values. Clinical Microbiology and Infection, 27(5), 736-741. https://doi.org/10.1016/j.cmi.2020.07.001
  • Kauter, A., Epping, L., Ghazisaeedi, F., Lübke-Becker, A., Wolf, S. A., Kannapin, D., Stoeckle, S. D., Semmler, T., Günther, S., Gehlen, H., & Walther, B. (2021). Frequency, Local Dynamics, and Genomic Characteristics of ESBL-Producing Escherichia coli Isolated From Specimens of Hospitalized Horses. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.671676
  • Koch-Institut, R., Seifried, J., Böttcher, S., Oh, D.-Y., Michel, J., Nitsche, A., Mirjam A., J., Wieler, L. H., Antão, E.-M., Jung-Sendzik, T., Dürrwald, R., Diercke, M., Haas, W., Abu Sin, M., Eckmanns, T., Hamouda, O., & Mielke, M. (2021). Was ist bei Antigentests zur Eigenanwendung (Selbsttests) zum Nachweis von SARS-CoV-2 zu beachten? Epidemiologisches Bulletin(8), 3-9. https://doi.org/10.25646/8040
  • Köck, R., Herr, C., Kreienbrock, L., Schwarz, S., Tenhagen, B. A., & Walther, B. (2021). Multiresistant gram-negative pathogens - A zoonotic problem. Deutsches Arzteblatt International, 118(35-36), 579-586. https://doi.org/10.3238/arztebl.m2021.0184
  • Kohl, C., Brinkmann, A., Radonić, A., Dabrowski, P. W., Mühldorfer, K., Nitsche, A., Wibbelt, G., & Kurth, A. (2021). The virome of German bats: comparing virus discovery approaches. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86435-4
  • Kohl, C., Nitsche, A., & Kurth, A. (2021). Update on potentially zoonotic viruses of european bats. Vaccines, 9(7). https://doi.org/10.3390/vaccines9070690
  • Köppen, K., Prensa, G. I., Rydzewski, K., Tlapák, H., Holland, G., & Heuner, K. (2021). First description of a temperate bacteriophage (Vb_fhim_kirk) of francisella hispaniensis strain 3523. Viruses, 13(2). https://doi.org/10.3390/v13020327
  • Krause, E., Puyskens, A., Bourquain, D., Brinkmann, A., Biere, B., Schaade, L., Michel, J., & Nitsche, A. (2021). Sensitive on-site detection of SARS-CoV-2 by ID NOW COVID-19. Molecular and Cellular Probes, 58. https://doi.org/10.1016/j.mcp.2021.101742
  • Krüger, L., Böttger, J., Huang, C. A., & Denner, J. (2021). Absence of porcine endogenous retrovirus (PERV) production from pig lymphoma cell lines. Virus Res, 198286. https://doi.org/10.1016/j.virusres.2020.198286
  • Kummer, S., Lander, A., Goretzko, J., Kirchoff, N., Rescher, U., & Schloer, S. (2021). Pharmacologically induced endolysosomal cholesterol imbalance through clinically licensed drugs itraconazole and fluoxetine impairs Ebola virus infection in vitro. . Emerg Microbes Infect, 11(1), 195-207. https://doi.org/10.1080/22221751.2021.2020598
  • Kunze, M., Steiner, T., Chen, F., Huber, C., Rydzewski, K., Stämmler, M., Heuner, K., & Eisenreich, W. (2021). Metabolic adaption of Legionella pneumophila during intracellular growth in Acanthamoeba castellanii. International Journal of Medical Microbiology, 311(4). https://doi.org/10.1016/j.ijmm.2021.151504
  • Langeveld, J. P. M., Balkema-Buschmann, A., Becher, D., Thomzig, A., Nonno, R., Andréoletti, O., Davidse, A., Di Bari, M. A., Pirisinu, L., Agrimi, U., Groschup, M. H., Beekes, M., & Shih, J. (2021). Stability of BSE infectivity towards heat treatment even after proteolytic removal of prion protein. Veterinary Research, 52(1). https://doi.org/10.1186/s13567-021-00928-8
  • Lassaunière, R., Polacek, C., Gram, G. J., Frische, A., Tingstedt, J. L., Krüger, M., Dorner, B. G., Cook, A., Brown, R., Orekov, T., Putmon-Taylor, T., Campbell, T. A., Greenhouse, J., Pessaint, L., Andersen, H., Lewis, M. G., & Fomsgaard, A. (2021). Preclinical evaluation of a candidate naked plasmid DNA vaccine against SARS-CoV-2. . npj Vaccines, 6(1). https://doi.org/10.1038/s41541-021-00419-z
  • Laue, M., Kauter, A., Hoffmann, T., Möller, L., Michel, J., & Nitsche, A. (2021). Morphometry of SARS-CoV and SARS-CoV-2 particles in ultrathin plastic sections of infected Vero cell cultures. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-82852-7
  • Lecomte, E., Laureys, G., Verbeke, F., Carrasco, C. D., Van Esbroeck, M., & Huits, R. (2021). A clinician’s perspective on yellow fever vaccine-associated neurotropic disease. Journal of Travel Medicine, 27(7). https://doi.org/10.1093/JTM/TAAA172
  • Lerche, N., Holtfreter, S., Walther, B., Semmler, T., Al’Sholui, F., Dancer, S. J., Daeschlein, G., Hübner, N. O., Bröker, B. M., Papke, R., Kohlmann, T., Baguhl, R., Seifert, U., & Kramer, A. (2021).
  • Staphylococcus aureus nasal colonization among dental health care workers in Northern Germany (StaphDent study). International Journal of Medical Microbiology, 311(6).
  • https://doi.org/10.1016/j.ijmm.2021.151524
  • Livet, S., Worbs, S., Volland, H., Simon, S., Dorner, M. B., Fenaille, F., Dorner, B. G., & Becher, F. (2021). Development and Evaluation of an Immuno-MALDI-TOF Mass Spectrometry Approach for Quantification of the Abrin Toxin in Complex Food Matrices. Toxins, 13(1). https://doi.org/10.3390/toxins13010052
  • Loenenbach, A., Markus, I., Stauke, J., Michel, J., Nitsche, A., Unger-Goldinger, B., Weidenauer, C., Schlosser, H., Beile, A., & Buchholz, U. (2021). Positivenanteile, RNA-Kopien und Anzüchtbarkeit von Proben zum Isolationsende von SARS-CoV-2 VOC B.1.1.7 („Alpha“) positiven Fallpersonen; LK Bergstraße; März 2021. Epidemiologisches Bulletin(25), 14-18. https://doi.org/10.25646/8681
  • Marklewitz, M., Handrick, S., Grasse, W., Kurth, A., Lukashev, A., Drosten, C., Ellerbrok, H., Leendertz, F. H., Pauli, G., & Junglen, S. (2021). Erratum: Gouléako virus isolated from west african mosquitoes constitutes a proposed novel genus in the family bunyaviridae (Journal of Virology (2011) 85 17 (9227-9234) 10.1128/JVI.00230-11). Journal of Virology, 95(10). https://doi.org/10.1128/JVI.00278-21
  • Mavian, C., López-Bueno, A., Martín, R., Nitsche, A., & Alcamí, A. (2021). Comparative pathogenesis, genomics and phylogeography of mousepox. Viruses, 13(6). https://doi.org/10.3390/v13061146
  • Meinhardt, J., Radke, J., Dittmayer, C., Franz, J., Thomas, C., Mothes, R., Laue, M., Schneider, J., Brünink, S., Greuel, S., Lehmann, M., Hassan, O., Aschman, T., Schumann, E., Chua, R. L., Conrad, C., Eils, R., Stenzel, W., Windgassen, M., Rößler, L., Goebel, H. H., Gelderblom, H. R., Martin, H., Nitsche, A., Schulz-Schaeffer, W. J., Hakroush, S., Winkler, M. S., Tampe, B., Scheibe, F., Körtvélyessy, P., Reinhold, D., Siegmund, B., Kühl, A. A., Elezkurtaj, S., Horst, D., Oesterhelweg, L., Tsokos, M., Ingold-Heppner, B., Stadelmann, C., Drosten, C., Corman, V. M., Radbruch, H., & Heppner, F. L. (2021). Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nature Neuroscience, 24(2), 168-175. https://doi.org/10.1038/s41593-020-00758-5
  • Michel, J., Neumann, M., Krause, E., Rinner, T., Muzeniek, T., Grossegesse, M., Hille, G., Schwarz, F., Puyskens, A., Förster, S., Biere, B., Bourquain, D., Domingo, C., Brinkmann, A., Schaade, L., Schrick, L., & Nitsche, A. (2021). Resource-efficient internally controlled in-house real-time PCR detection of SARS-CoV-2. Virology Journal, 18(1). https://doi.org/10.1186/s12985-021-01559-3
  • Mikolajewska, A., Weber, S., Stegemann, M. S., Konik, M., Jensen, B., & Karagiannidis, C. (2021). Neue Therapiealgorithmen: COVID-19 von leicht bis schwer richtig behandeln. . Deutsches Ärzteblatt, 118(44).
  • Mülner, P., Schwarz, E., Dietel, K., Herfort, S., Jähne, J., Lasch, P., Cernava, T., Berg, G., & Vater, J. (2021). Fusaricidins, Polymyxins and Volatiles Produced by Paenibacillus polymyxa Strains DSM 32871 and M1. Pathogens, 10(11). https://doi.org/10.3390/pathogens10111485
  • Muzeniek, T., Perera, T., Siriwardana, S., Bas, D., Kaplan, F., Öruc, M., Becker-Ziaja, B., Schwarz, F., Premawansa, G., Premawansa, S., Perera, I., Yapa, W., Nitsche, A., & Kohl, C. (2021). Detection of alpha-and betacoronaviruses in miniopterus fuliginosus and rousettus leschenaultii, two species of sri lankan bats. Vaccines, 9(6). https://doi.org/10.3390/vaccines9060650
  • Nesi, N., Tsagkogeorga, G., Tsang, S. M., Nicolas, V., Lalis, A., Scanlon, A. T., Riesle-Sbarbaro, S. A., Wiantoro, S., Hitch, A. T., Juste, J., Pinzari, C. A., Bonaccorso, F. J., Todd, C. M., Lim, B. K., Simmons, N. B., McGowen, M. R., & Rossiter, S. J. (2021). Interrogating Phylogenetic Discordance Resolves Deep Splits in the Rapid Radiation of Old World Fruit Bats (Chiroptera: Pteropodidae). Systematic Biology, 70(6), 1077-1089. https://doi.org/10.1093/sysbio/syab013
  • Neumann, T., Krüger, M., Weisemann, J., Mahrhold, S., Stern, D., Dorner, M. B., Feraudet-Tarisse, C., Pöhlmann, C., Schulz, K., Messelhäußer, U., Rimek, D., Gessler, F., Elßner, T., Simon, S., Rummel, A., & Dorner, B. G. (2021). Innovative and Highly Sensitive Detection of Clostridium perfringens Enterotoxin Based on Receptor Interaction and Monoclonal Antibodies. Toxins, 13(4). https://doi.org/10.3390/toxins13040266
  • Orsini Delgado, M. L., Avril, A., Prigent, J., Dano, J., Rouaix, A., Worbs, S., Dorner, B. G., Rougeaux, C., Becher, F., Fenaille, F., Livet, S., Volland, H., Tournier, J. N., & Simon, S. (2021). Ricin Antibodies’ Neutralizing Capacity against Different Ricin Isoforms and Cultivars. Toxins, 13(2). https://doi.org/10.3390/toxins13020100
  • Pinder, P., Thomzig, A., Schulz-Schaeffer, W. J., & Beekes, M. (2021). Alpha-synuclein seeds of Parkinson’s disease show high prion-exceeding resistance to steam sterilization. Journal of Hospital Infection, 108, 25-32. https://doi.org/10.1016/j.jhin.2020.10.018
  • Puyskens, A., Krause, E., Michel, J., Nübling, C. M., Scheiblauer, H., Bourquain, D., Grossegesse, M., Valusenko, R., Corman, V. M., Drosten, C., Zwirglmaier, K., Wölfel, R., Lange, C., Kramer, J., Friesen, J., Ignatius, R., Müller, M., Schmidt-Chanasit, J., Emmerich, P., Schaade, L., & Nitsche, A. (2021). Establishment of a specimen panel for the decentralised technical evaluation of the sensitivity of 31 rapid diagnostic tests for SARS-CoV-2 antigen, Germany, September 2020 to April 2021. Euro Surveill, 26(44). https://doi.org/10.2807/1560-7917.es.2021.26.44.2100442
  • Rajhi, M., Haddad-Boubaker, S., Chouikha, A., Bourquain, D., Michel, J., Hammami, W., Sadraoui, A., Touzi, H., Ghedira, K., & Triki, H. (2021). Identification of two novel hepatitis C virus subtype 2 from Tunisia (2v and 2w). PLoS ONE, 16(3 March). https://doi.org/10.1371/journal.pone.0248249
  • Rancan, F., Jurisch, J., Günday, C., Türeli, E., Blume-Peytavi, U., Vogt, A., Schaudinn, C., & Günday-Türeli, N. (2021). Screening of surfactants for improved delivery of antimicrobials and poly-lactic-co-glycolic acid particles in wound tissue. Pharmaceutics, 13(7). https://doi.org/10.3390/pharmaceutics13071093
  • Sagar, S., Rathinavel, A. K., Lutz, W. E., Struble, L. R., Khurana, S., Schnaubelt, A. T., Mishra, N. K., Guda, C., Palermo, N. Y., Broadhurst, M. J., Hoffmann, T., Bayles, K. W., Reid, S. P. M., Borgstahl, G. E. O., & Radhakrishnan, P. (2021). Bromelain inhibits SARS-CoV-2 infection via targeting ACE-2, TMPRSS2, and spike protein. Clin Transl Med, 11(2), e281. https://doi.org/10.1002/ctm2.281
  • Scheiblauer, H., Filomena, A., Nitsche, A., Puyskens, A., Corman, V. M., Drosten, C., Zwirglmaier, K., Lange, C., Emmerich, P., Müller, M., Knauer, O., & Nübling, C. M. (2021). Comparative sensitivity evaluation for 122 CE-marked rapid diagnostic tests for SARS-CoV-2 antigen, Germany, September 2020 to April 2021. Euro Surveill, 26(44). https://doi.org/10.2807/1560-7917.es.2021.26.44.2100441
  • Schwarz, T., Tober-Lau, P., Hillus, D., Helbig, E. T., Lippert, L. J., Thibeault, C., Koch, W., Landgraf, I., Michel, J., Bergfeld, L., Niemeyer, D., Mühlemann, B., Conrad, C., Dang-Heine, C., Kasper, S., Münn, F., Kappert, K., Nitsche, A., Tauber, R., Schmidt, S., Kopankiewicz, P., Bias, H., Seybold, J., von Kalle, C., Jones, T. C., Suttorp, N., Drosten, C., Sander, L. E., Corman, V. M., & Kurth, F. (2021). Delayed antibody and T-cell response to BNT162b2 vaccination in the elderly, Germany. Emerging Infectious Diseases, 27(8), 2174-2178. https://doi.org/10.3201/eid2708.211145
  • Seifried, J., Böttcher, S., Oh, D.-Y., Hauer, B., Schaade, L., Hamouda, O., & Mielke, M. (2021). PCR-Testkapazitäten nutzen für Personengruppen ohne Impfmöglichkeit: Serielles Screening von Kindern in KiTas und Grundschulen mittels Lolli-Pool-PCR-Testungen auf SARS-CoV-2 als Teil eines Multikomponenten-Präventionskonzepts. Epidemiologisches Bulletin(26), 3-8. https://doi.org/10.25646/8739
  • Seifried, J., Böttcher, S., von Kleist, M., Jenny, M. A., Antão, E.-M., Oh, D.-Y., Jung-Sendzik, T., Broich, K., Denkinger, C., Bartenschlager, R., Schaade, L., Hamouda, O., & Mielke, M. (2021). Antigentests als ergänzendes Instrument in der Pandemiebekämpfung. Epidemiologisches Bulletin(17), 3-14. https://doi.org/10.25646/8264
  • Seifried, J., Hoffmann, A., Reda, S., Böttcher, S., Abu Sin, M., Hofmann, A., Noll, I., von Laer, A., Reuss, A., Oh, D. Y., Albrecht, S., Stern, D., Willrich, N., Staat, D., Zacher, B., Schneider, M., Feig, M., Nitsche, A., Rieck, T., Rexroth, U., Eckmanns, T., & Hamouda, O. (2021). Erratum: Recording of SARS-CoV-2 laboratory tests in Germany (Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz (2021) 64:4 (403-411), 10.1007/s00103-021-03307-y). Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 64(10), 1315. https://doi.org/10.1007/s00103-021-03398-7
  • Seifried, J., Hoffmann, A., Reda, S., Böttcher, S., Abu Sin, M., Hofmann, A., Noll, I., von Laer, A., Reuss, A., Oh, D. Y., Albrecht, S., Stern, D., Willrich, N., Staat, D., Zacher, B., Schneider, M., Feig, M., Nitsche, A., Rieck, T., Rexroth, U., Eckmanns, T., & Hamouda, O. (2021). Recording of SARS-CoV-2 laboratory tests in Germany. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 64(4), 403-411. https://doi.org/10.1007/s00103-021-03307-y
  • Sommer, A., Fuchs, S., Layer, F., Schaudinn, C., Weber, R. E., Richard, H., Erdmann, M. B., Laue, M., Schuster, C. F., Werner, G., & Strommenger, B. (2021). Mutations in the gdpp gene are a clinically relevant mechanism for β-lactam resistance in meticillin-resistant staphylococcus aureus lacking mec determinants. Microbial Genomics, 7(9). https://doi.org/10.1099/MGEN.0.000623
  • Stern, D., Böttcher, S., Oh, D.-Y., Staat, D., Albrecht, S., Willrich, N., Zacher, B., Mielke, M., Rexroth, U., Hamouda, O., & Seifried, J. (2021). Erfassung der SARS-CoV-2-PCR-Testzahlen in Deutschland. Epidemiologisches Bulletin(6), 13-19. https://doi.org/10.25646/8001.2
  • Stöckle, S. D., Kannapin, D. A., Kauter, A. M. L., Lübke-Becker, A., Walther, B., Merle, R., & Gehlen, H. (2021). A pilot randomised clinical trial comparing a short-term perioperative prophylaxis regimen to a long-term standard protocol in equine colic surgery. Antibiotics, 10(5). https://doi.org/10.3390/antibiotics10050587
  • ten Hagen, N. A., Twele, F., Meller, S., Jendrny, P., Schulz, C., von Köckritz-Blickwede, M., Osterhaus, A., Ebbers, H., Pink, I., Welte, T., Manns, M. P., Illig, T., Fathi, A., Addo, M. M., Nitsche, A., Puyskens, A., Michel, J., Krause, E., Ehmann, R., von Brunn, A., Ernst, C., Zwirglmaier, K., Wölfel, R., Nau, A., Philipp, E., Engels, M., Schalke, E., & Volk, H. A. (2021). Discrimination of SARS-CoV-2 Infections From Other Viral Respiratory Infections by Scent Detection Dogs. Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.749588
  • Thomzig, A., Wagenführ, K., Pinder, P., Joncic, M., Schulz-Schaeffer, W. J., & Beekes, M. (2021). Correction to: Transmissible α‑synuclein seeding activity in brain and stomach of patients with Parkinson’s disease (Acta Neuropathologica, (2021), 141, 6, (861-879), 10.1007/s00401-021-02312-4). Acta Neuropathologica, 142(1), 225. https://doi.org/10.1007/s00401-021-02321-3
  • Thomzig, A., Wagenführ, K., Pinder, P., Joncic, M., Schulz-Schaeffer, W. J., & Beekes, M. (2021). Transmissible α-synuclein seeding activity in brain and stomach of patients with Parkinson’s disease. Acta Neuropathologica, 141(6), 861-879. https://doi.org/10.1007/s00401-021-02312-4
  • van der Toorn, W., Oh, D. Y., Bourquain, D., Michel, J., Krause, E., Nitsche, A., von Kleist, M., & the Working Group on, S.-C.-D. a. R. K. I. (2021). An intra-host SARS-CoV-2 dynamics model to assess testing and quarantine strategies for incoming travelers, contact management, and de-isolation. Patterns, 2(6). https://doi.org/10.1016/j.patter.2021.100262
  • Viehweger, A., Blumenscheit, C., Lippmann, N., Wyres, K. L., Brandt, C., Hans, J. B., Hölzer, M., Irber, L., Gatermann, S., Lübbert, C., Pletz, M. W., Holt, K. E., & König, B. (2021). Context-aware genomic surveillance reveals hidden transmission of a carbapenemase-producing Klebsiella pneumoniae. . Microb Genom, 7(12). https://doi.org/10.1099/mgen.0.000741
  • Wälzlein, J. H., Schwenke, K. A., & Beekes, M. (2021). Propagation of cjd prions in primary murine glia cells expressing human prpc. Pathogens, 10(8). https://doi.org/10.3390/pathogens10081060
  • Wendt, R., Tittelbach, J., Schrick, L., Kellner, N., Kalbitz, S., Ruehe, B., Michel, J., Schliemann, S., Elsner, P., Lübbert, C., & Nitsche, A. (2021). Generalized cowpox virus infection in an immunosuppressed patient. International Journal of Infectious Diseases, 106, 276-278. https://doi.org/10.1016/j.ijid.2021.03.076
  • Wettengel, J. M., Linden, B., Esser, K., Laue, M., Burwitz, B. J., & Protzer, U. (2021). Rapid and robust continuous purification of high-titer hepatitis b virus for in vitro and in vivo applications. Viruses, 13(8). https://doi.org/10.3390/v13081503
  • Wichmann, O., Scholz, S., Waize, M., Schmid-Küpke, N., Hamouda, O., Wieler, L. H., & Schaade, L. (2021). Welche Impfquote ist notwendig, um COVID-19 zu kontrollieren? Epidemiologisches Bulletin(27), 3-13. https://doi.org/10.25646/8742
  • Williamson, B. N., Prescott, J., Garrido, J. L., Alvarez, R. A., Feldmann, H., & Barría, M. I. (2021). Therapeutic efficacy of human monoclonal antibodies against andes virus infection in syrian hamsters. Emerging Infectious Diseases, 27(10), 2707-2710. https://doi.org/10.3201/eid2710.210735
  • Willrich, N., Böttcher, S., Stern, D., Biegala, W., Albrecht, S., Oh, D.-Y., Feig, M., Schneider, M., Noll, I., Abu Sin, M., Mielke, M., Rexroth, U., Eckmanns, T., Hamouda, O., & Seifried, J. (2021). Update: Erfassung der SARS-CoV-2-PCR-Testzahlen in Deutschland und die Entwicklung der Testzahlen in ärztlichen Praxen. Epidemiologisches Bulletin(47), 18-25. https://doi.org/10.25646/9306
  • Willrich, N., Stern, D., Böttcher, S., Biegala, W., Albrecht, S., Oh, D.-Y., Abu Sin, M., Mielke, M., Rexroth, U., Eckmanns, T., Hamouda, O., & Seifried, J. (2021). Erfassung der SARS-CoV-2-PCR-Testzahlen in Deutschland. Epidemiologisches Bulletin(24), 3-10. https://doi.org/10.25646/8586
  • Worbs, S., Kampa, B., Skiba, M., Hansbauer, E. M., Stern, D., Volland, H., Becher, F., Simon, S., Dorner, M. B., & Dorner, B. G. (2021). Differentiation, quantification and identification of abrin and abrus precatorius agglutinin. Toxins, 13(4). https://doi.org/10.3390/TOXINS13040284
  • Wozniak, D. M., Kirchoff, N., Hansen-Kant, K., Sogoba, N., Safronetz, D., & Prescott, J. (2021). Hematology and clinical chemistry reference ranges for laboratory-bred natal multimammate mice (Mastomys natalensis). Viruses, 13(2). https://doi.org/10.3390/v13020187
  • Wozniak, D. M., Riesle-Sbarbaro, S. A., Kirchoff, N., Hansen-Kant, K., Wahlbrink, A., Stern, A., Lander, A., Hartmann, K., Krasemann, S., Andreas, K., & Prescott, J. (2021). Inoculation route-dependent Lassa virus dissemination and shedding dynamics in the natural reservoir - Mastomys natalensis. Emerg Microbes Infect, 1-31. https://doi.org/10.1080/22221751.2021.2008773
  • Zouaghi, K., Bouattour, A., Aounallah, H., Surtees, R., Krause, E., Michel, J., Mamlouk, A., Nitsche, A., & M’ghirbi, Y. (2021). First serological evidence of crimean-congo hemorrhagic fever virus and rift valley fever virus in ruminants in tunisia. Pathogens, 10(6). https://doi.org/10.3390/pathogens10060769
Remarques
N/A
Pièces jointes
N/A
5. Décrire succinctement les travaux sur la défense biologique réalisés dans l’installation, y compris le(s) type(s) de micro-organismes(9) et/ou toxines étudiés, et résumer les études en plein air sur les aérosols biologiques.

The Centre for Biological Threats and Special Pathogens is divided into seven units (ZBS 1-7). These are briefly described below.


ZBS 1, the Unit for Highly Pathogenic Viruses, is responsible for the establishment of diagnostic methods to detect high-risk pathogens, in particular imported viruses and viruses that could be used for bioterrorist attacks, for the establishment of methods to detect genetically modified viruses, for the development of antigen-based detection methods for risk category 3 pathogens (eventually, risk category 4 pathogens), for the development of rapid and sensitive nucleic acid-based detection methods for the identification, characterisation and differentiation of pathogens of high-risk groups, for the development of strategies for the combat and prevention of infections with highly pathogenic viruses, for research on these pathogens in order to improve both therapy and prophylaxis, for research on mechanisms of pathogenesis of both wild-type viruses and genetically modified viruses that could be used as bioweapons, for the development of SOPs (standard operating procedures) for diagnostics, for the provision of reference samples, standards and materials for diagnostics, for the quality management and further development of detection methods based on serologic or virologic parameters or the pathogen’s molecular biology including interlaboratory experiments, and for the organisation of collaborations with European and international high level disease safety laboratories. ZBS1 hosts the Consultant Laboratory for Poxviruses.

ZBS2, the Unit for Highly Pathogenic Microorganisms, is responsible for the organisation of the diagnostics of samples with bioterrorism suspicion within ZBS, for the development and optimisation of microbiological, molecular biological and immunological detection systems for the identification, characterisation and differentiation of highly pathogenic microorganisms, for the management of a culture collection with highly pathogenic and other relevant microorganisms, for the supply of reference materials for diagnostics of relevant microbial pathogens within the framework of cooperative projects, provides proficiency tests (in compliance to international standards described in the DIN EN ISO/IEC 17043) using material of highly pathogenic bacteria for quality assurance measures in the field of diagnostics (SHARP EU-DG SANTE, RefBio UNSGM), for research in the field of epidemiology, pathogenesis and genetics of selected highly pathogenic bacteria with a focus on B. anthracis-like bacteria (Bacillus cereus biovar anthracis) and F. tularensis, hosting the national Consultant Laboratories for Tularemia and for Bacillus anthracis pathogens, for a Working Group “Cellular interactions of bacterial pathogens” with a focus on F. tularensis and Legionella research, for the development and testing of decontamination and disinfection processes in particular for bioterrorist attacks, and for studies on the evidence and tenacity of highly pathogenic microorganisms under different environmental conditions. For these activities, the unit is running a BSL 3 laboratory.


ZBS3, the Unit for Biological Toxins, is responsible for the diagnostics of plant and microbial toxins that could be used for bioterrorist attacks using techniques based on cell biological, genetical and serological parameters, as well as chromatographic methods and mass spectroscopy, for the development of SOPs for diagnostics, for the provision of reference samples, reference bacterial strains and standards, and storage of diagnostic material, for the adaptation of the diagnostic materials to the expected sample material, for the development of strategies for the detection of novel and modified toxins and agents, for research on the pathogenesis of the diseases induced, for interlaboratory experiments to assure the quality of diagnostics, for decontamination, for contribution to the development of standard therapies, and for characterisation of adherence/colonisation factors in toxin-producing and tissue-damaging bacteria. Moreover, ZBS3 hosts the national Consultant Laboratory for Neurotoxin producing Clostridia (botulism, tetanus) and the Consultant Laboratory for C. botulinum and Botulinum Neurotoxin in Food of the German Veterinary Medical Society.


ZBS4, the Unit for Advanced Light and Electron Microscopy, is responsible for the rapid diagnostic electron microscopy (EM) of pathogens (primary diagnostics, identification and differentiation of bacterial and viral pathogens in environmental and patient samples), for the morphological characterisation and classification of both novel and rare pathogens by EM, for the development, testing and standardisation of preparation methods for diagnostic EM of pathogens, for the organisation of an international quality assurance testing scheme and of advanced training courses to preserve and improve quality standards in diagnostic EM, and for light and electron microscopy investigations of pathogens and mechanisms of their infectivity, pathogenicity or tenacity. ZBS4 is the core facility for digital photography, image documentation and for light and electron microscopy at the RKI. It hosts the Consultant Laboratory for Diagnostic Electron Microscopy of Infectious Pathogens.


ZBS5, the Unit for Biosafety Level 4 Laboratory, is responsible for operating the biosafety level 4 (BSL-4) laboratory within the RKI, for the establishment of diagnostic methods and diagnostic of pathogens in biosafety level 4, for the development of strategies for the prevention, decontamination and control of highly pathogenic viruses together with IBBS and ZBS 1, for the development of decontamination and disinfection measures for BSL-4 pathogens, for investigating the ability of BSL-4 pathogens to survive in biological andenvironmental samples, and for participation in and organisation of interlaboratory tests for quality assurance of diagnostics (national and international).

ZBS6, the Unit for Proteomics and Spectroscopy, is responsible for the characterisation of highly pathogenic microorganisms by means of proteomic techniques (MALDI-TOF mass spectrometry [MS] and LC-MS) and chem- and bioinformatics, for research on the molecular and structural bases underlying the proteinaceous seeding activity of prions and other self-replicating protein particles (“prionoids”) in transmissible and nontransmissible proteinopathies, for proteomics and molecular biology of proteinopathies and neurodegenerative diseases, for the rapid detection of pathogens by vibrational (infrared and Raman) spectroscopy and microspectroscopy, for the development of methods for the characterisation of agents with bioterrorism potential based on confocal Raman microspectroscopy (CRM) and for the characterisation of cells, cell clusters and tissue structures for pathologically and/or chronically degenerative processes by means of microspectroscopic techniques (Raman, IR microspectroscopy and imaging) in combination with modern methods of bioinformatics. ZBS6 hosts the Research Group “Prions and Prionoids”


ZBS 7 – Strategy and Incidence Response is responsible for strengthening national public health preparedness and response capabilities to biological threats caused by highly pathogenic or bioterrorism-related agents ("special pathogens"). ZBS 7 provides support for the public health sector regarding early detection, situation assessment and response to unusual biological incidents related to bioterrorism or any natural occurrence or accidental release of highly pathogenic agents. Key aspects of activity are 1) preparedness and response planning for incidents related to special pathogens, and 2) response to bioterrorism or any unusual biological incident caused by special pathogens. ZBS 7 heads the office of the German “Permanent Working Group of Competence and Treatment Centres for High Consequence Infectious Diseases” (Ständiger Arbeitskreis der Kompetenz- und Behandlungszentren für Krankheiten durch hochpathogene Erreger, STAKOB).


A list of highly pathogenic biological agents and toxins for which detection methods are established at the RKI can be obtained using the following link: http://www.rki.de/DE/Content/Infekt/Diagnostik_Speziallabore/speziallabo... (in German). The list contains abrin (Abrus precatorius), Bacillus anthracis, Brucella spp., Burkholderia mallei and pseudomallei, Clostridium botulinum toxins, Clostridium tetani toxin, Coxiella burnetii, Francisella tularensis, ricin (Ricinus communis), staphylococcal enterotoxin B (Staphylococcus aureus), Vibrio cholera, Yersinia pestis, and a number of viruses, e.g. dengue virus, yellow fever virus, Variola and other pox viruses, Venezuelan equine encephalomyelitis virus, viral haemorrhagic fever viruses, and yellow fever virus. Please note that for several of the agents listed only diagnostics are developed while no research on the pathogen itself is carried out, e.g. smallpox virus.


Outdoor studies of biological aerosols have not been conducted.

(9) Notamment les virus et prions.