Скачать

High Containment Laboratory, Public Health Agency of Sweden (The Swedish BSL4 laboratory)

2. Курирующая государственная или частная организация или компания
Public Health Agency of Sweden
3. Местонахождение и почтовый адрес
Public Health Agency of Sweden, SE-171 82 SOLNA, Sweden
4. Источник(и) финансирования объявляемой деятельности с указанием случаев, когда она полностью или частично финансируется министерством обороны

The activities are financed through the Swedish Government (Ministry of Health and Social Affairs), and through governmental agencies such as Swedish Civil Contingencies Agency (MSB), Swedish Research Council (VR) and partly by the EU (research funds and the Innovative Medicines Initiative and funding through Joint Actions within European Health Program).

5. Число максимально изолированных подразделений5 в рамках исследовательского центра и/или лаборатории с указанием их соответствующих размеров (м2)
BL 4 , 136.00 м2
Two separate BSL4 units enclosing three laboratories.
6. Объем и общее описание деятельности, включая, соответственно, вид(ы) микроорганизмов и/или токсинов

The Public Health Agency of Sweden is a national expert authority with overall responsibility for public health questions at a national level. Our mission is to promote health, prevent illness and contribute to a sustainable society. There are no projects conducted related to biological defence, more than a strive to a better biological understanding of biological agents (see publication list below). The agency develops and maintain national diagnostic preparedness for highly pathogenic agents. Research results are published in international journals.

 

Risk group 4 agents

In the BSL4 containment units diagnostics and research regarding viruses from the following families are performed: Arenaviridae, Coronaviridae, Filoviridae, Flaviviridae, Nairoviridae, Orthomyxoviridae, Paramyxoviridae, Phenuiviridae and Poxviridae. Special emphasis is directed towards the Crimean-Congo haemorrhagic fever virus (CCHFV) and Ebola virus.

 

Methods for identification

Standard methods are used for identification of these microorganisms. Methods in use include molecular biological methods (including novel high throughput/high capacity methods), serological methods such as neutralization assays, cultivation/isolation and electron microscopy. Public Health Agency of Sweden also has capacity to culture virus in small rodents. The quality of diagnostic methods for many of the pathogens is assured through participation in quality assurance exercises and ring trials within international EC-funded networks.

The general goals are to improve laboratory diagnostics, laboratory capacity and basic knowledge of highly pathogenic agents. This includes the development of platforms for broad, efficient and reliable diagnostic methods, studies of virulence and pathogenesis and the establishment and use of animal models for use in diagnostics, treatment and vaccine development.

 

 

Public Health Agency of Sweden (PHAS): publications in 2022 related to high containment laboratory BSL3 and BSL4 activities at PHAS:

Multi-omics insights into host-viral response and pathogenesis in Crimean-Congo hemorrhagic fever viruses for novel therapeutic target. Neogi U, Elaldi N, Appelberg S, Ambikan A, Kennedy E, Dowall S , Bagci BK , Gupta S, Rodriguez JE, Svensson-Akusjärvi S, Monteil V, Vegvari A, Benfeitas R, Banerjea A, Weber F, Hewson R, Mirazimi A. eLife 2022 Apr 19;11:e76071. doi: 10.7554/eLife.76071. PMID: 35437144

 

A universal SARS-CoV DNA vaccine inducing highly cross-reactive neutralizing antibodies and T cells. Appelberg S, Ahlén G, Yan J, Nikouyan N, Weber S, Larsson O, Höglund U, Aleman S, Weber F, Perlhamre E, Apro J, Gidlund E-K, Tuvesson O, Salati S, Cadossi M, Tegel H, Hober S, Frelin L, Mirazimi A, Sällberg M. EMBO Mol Med. 2022 Oct 10;14(10):e15821. doi: 10.15252/emmm.202215821. Epub 2022 Sep 2. PMID: 35986481

 

Nucleoside-Modified mRNA Vaccines Protect IFNAR–/– Mice against Crimean-Congo Hemorrhagic Fever Virus Infection. Appelberg S, John L, Pardi N, Végvári Á, Bereczky S, Ahlén G, Monteil V, Abdurahman S, Mikaeloff F, Beattie M, Tam Y, Sällberg M, Neogi U, Weissman D, Mirazimi A. J Virol. 2022 Feb 9;96(3):e0156821. doi: 10.1128/JVI.01568-21. Epub 2021 Nov 24. PMID: 34817199

 

A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells. Garreta E, Prado P,Stanifer ML, Monteil V,Marco A, Ullate-Agote A,Moya-Rull DVilas-Zornoza A,Tarantino C,Romero JP,Jonsson G,Oria R, Leopoldi A Hagelkruys A,Gallo M,González F,Domingo-Pedrol P, Gavaldà A,Hurtado del Pozo C, Ali OH, Ventura-Aguiar P,Campistol JM,Prosper F,Mirazimi A,Boulant S,Penninger JMMontserrat N. Cell Metab. 2022 Jun 7; 34(6): 857–873.e9. doi: 10.1016/j.cmet.2022.04.009. PMID: 35561674

 

Evidence in favor of the essentiality of human cell membrane-bound ACE2 and against soluble ACE2 for SARS-CoV-2 infectivity. Batlle D, Monteil V, Garreta E, Hassler L, Wysocki J, Chandar V, Schwartz RE, Mirazimi A, Montserrat N, Bader M, Penninger JM. Cell. 2022 May 26;185(11):1837-1839. doi: 10.1016/j.cell.2022.05.004. PMID: 35623327

 

Clinical grade ACE2 as a universal agent to block SARS-CoV-2 variants. Monteil V, Eaton B, Postnikova E, Murphy M, Braunsfeld B, Crozier I, Kricek F, Niederhöfer J, Schwarzböck A, Breid H, Devignot S, Klingström J, Thålin C, Kellner MJ, Christ W, Havervall S, Mereiter S, Knapp S, Sanchez Jimenez A, Bugajska-Schretter A, Dohnal A, Ruf C, Gugenberger R, Hagelkruys A, Montserrat N, Kozieradzki I, Hasan Ali O, Stadlmann J, Holbrook MR, Schmaljohn C, Oostenbrink C, Shoemaker RH, Mirazimi A, Wirnsberger G, Penninger JM. EMBO Mol Med. 2022 Aug 8;14(8):e15230. doi: 10.15252/emmm.202115230. Epub 2022 Jul 4. PMID: 35781796

 

Protocol for SARS-CoV-2 infection of kidney organoids derived from human pluripotent stem cells. Garreta E, Moya-Rull D, Stanifer ML, Monteil V, Prado P, Marco A, Tarantino C, Gallo M, Jonsson G, Hagelkruys A, Mirazimi A, Boulant S, Penninger JM, Montserrat N. STAR Protoc. 2022 Dec 16;3(4):101872. doi: 10.1016/j.xpro.2022.101872. Epub 2022 Nov 7. PMID: 36595951

 

Methods of Inactivation of Highly Pathogenic Viruses for Molecular, Serology or Vaccine Development Purposes. Elveborg S, Monteil VM, Mirazimi A. Pathogens. 2022 Feb 19;11(2):271. doi: 10.3390/pathogens11020271. PMID: 35215213

 

Ten-Week Follow-Up of Monkeypox Case-Patient, Sweden, 2022. Pettke A, Filén F, Widgren K, Jacks A, Glans H, Andreasson S, Muradrasoli S, Helgesson S, Hauzenberger E, Lind Karlberg M, Walai N, Bjerkner A, Gourlé H, Gredmark-Russ S, Karlsson Lindsjö O, Sondén K, Asgeirsson H. Emerg Infect Dis. 2022 Oct;28(10):2074-2077. doi: 10.3201/eid2810.221107. PMID: 36148930

 

Adaptation of Brucella melitensis Antimicrobial Susceptibility Testing to the ISO 20776 Standard and Validation of the Method. Tscherne A, Mantel E, Boskani T, Budniak S, Elschner M, Fasanella A, Feruglio SL, Galante D, Giske CG, Grunow R, Henczko J, Hinz C, Iwaniak W, Jacob D, Kedrak-Jablonska A, Jensen VK, Johansen TB, Kahlmeter G, Manzulli V, Matuschek E, Melzer F, Nuncio MS, Papaparaskevas J, Pelerito A, Solheim M, Thomann S, Tsakris A, Wahab T,  Weiner M, Zoeller L, Zange S; EMERGE AST Working Group. Microorganisms. 2022 Jul 20;10(7):1470. doi: 10.3390/ microorganisms10071470. PMID: 35889189

 

The ddn Trp20Stop Mutation and Its Association with Lineage 4.5 and Resistance to Delamanid and Pretomanid in Mycobacterium tuberculosis. Mansjö M, Karlsson Lindsjö O, Grönfors Seeth C, Groenheit R, Werngren J.Antimicrob Agents Chemother. 2022 Dec 20;66(12):e0102622. doi: 10.1128/aac.01026-22. Epub 2022 Nov 21. PMID: 36409105

 

The CRyPTIC Consortium. A data compendium associating the genomes of 12,289 Mycobacterium tuberculosis isolates with quantitative resistance phenotypes to 13 antibiotics. PLoS Biol. 2022 Aug 9;20(8):e3001721. doi: 10.1371/journal.pbio.3001721. PMID: 35944069

 

Dreyer V, Mandal A, Dev P, Merker M, Barilar I, Utpatel C, Nilgiriwala K, Rodrigues C, Crook DW; CRyPTIC Consortium; Rasigade JP, Wirth T, Mistry N, Niemann S. High fluoroquinolone resistance proportions among multidrug-resistant tuberculosis driven by dominant L2 Mycobacterium tuberculosis clones in the Mumbai Metropolitan Region. Genome Med. 2022 Aug 22;14(1):95. doi: 10.1186/s13073-022-01076-0. PMID: 35989319

 

The CRyPTIC Consortium. Genome-wide association studies of global Mycobacterium tuberculosis resistance to 13 antimicrobials in 10,228 genomes identify new resistance mechanisms. PLoS Biol. 2022 Aug 9;20(8):e3001755. doi: 10.1371/journal.pbio.3001755. PMID: 35944070

 

Conkle-Gutierrez D, Kim C, Ramirez-Busby SM, Modlin SJ, Mansjö M, Werngren J, Rigouts L, Hoffner SE, Valafar F. Distribution of Common and Rare Genetic Markers of Second-Line-Injectable-Drug Resistance in Mycobacterium tuberculosis Revealed by a Genome-Wide Association Study. Antimicrob Agents Chemother. 2022 Jun 21;66(6):e0207521. doi: 10.1128/aac.02075-21. Epub 2022 May 9. PMID: 35532237

 

Fowler PW, Wright C, Spiers H, Zhu T, Baeten EML, Hoosdally SW, Gibertoni Cruz AL, Roohi A, Kouchaki S, Walker TM, Peto TEA, Miller G, Lintott C, Clifton D, Crook DW, Walker AS; Zooniverse Volunteer Community; CRyPTIC Consortium. A crowd of BashTheBug volunteers reproducibly and accurately measure the minimum inhibitory concentrations of 13 antitubercular drugs from photographs of 96-well broth microdilution plates. Elife. 2022 May 19;11:e75046. doi: 10.7554/eLife.75046. PMID: 35588296

 

Bateson A, Ortiz Canseco J, McHugh TD, Witney AA, Feuerriegel S, Merker M, Kohl TA, Utpatel C, Niemann S, Andres S, Kranzer K, Maurer FP, Ghodousi A, Borroni E, Cirillo DM, Wijkander M, Toro JC, Groenheit R, Werngren J, Machado D, Viveiros M, Warren RM, Sirgel F, Dippenaar A, Köser CU, Sun E, Timm J. Ancient and recent differences in the intrinsic susceptibility of Mycobacterium tuberculosis complex to pretomanid. J Antimicrob Chemother. 2022 May 29;77(6):1685-1693. doi: 10.1093/jac/dkac070. PMID: 35260883

 

Antimycobacterial Susceptibility Testing Group. Updating the approaches to define susceptibility and resistance to anti-tuberculosis agents: implications for diagnosis and treatment. Eur Respir J. 2022 Apr 14;59(4):2200166. doi: 10.1183/13993003.00166-2022. PMID: 35422426

 

Walker TM, Miotto P, Köser CU, Fowler PW, Knaggs J, Iqbal Z, Hunt M, Chindelevitch L, Farhat M, Cirillo DM, Comas I, Posey J, Omar SV, Peto TE, Suresh A, Uplekar S, Laurent S, Colman RE, Nathanson CM, Zignol M, Walker AS; CRyPTIC Consortium; Seq&Treat Consortium; Crook DW, Ismail N, Rodwell TC. The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: A genotypic analysis. Lancet Microbe. 2022 Apr;3(4):e265-e273. doi: 10.1016/S2666-5247(21)00301-3. PMID: 35373160

 

Klaos K, Holicka Y, Groenheit R, Ködmön C, van der Werf MJ, Nikolayevskyy V. Current state of national TB laboratory networks in Europe: achievements and challenges. Int J Tuberc Lung Dis. 2022 Jan 1;26(1):71-73. doi: 10.5588/ijtld.21.0520. PMID: 34969433

 

(4) В отношении объектов, имеющих максимально изолированные подразделения, которые участвуют в осуществлении национальной программы исследований и разработок в области биологической защиты, просьба указать наименование объекта и сделать пометку "Объявлен в соответствии с формой А, часть 2 (iii)".

(5) В соответствии с самым последним изданием Практического руководства по биологической безопасности в лабораторных условиях ВОЗ или эквивалентными положениями.